Lời giải của giáo viên
Ta có: \({\log _2}^2x - 3{\log _2}x + 2 = 0 \)
\(\Leftrightarrow \left( {{{\log }_2}x - 1} \right)\left( {{{\log }_2} - 2} \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}{\log _2}x = 1\\{\log _2}x = 2\end{array} \right.\)
\(\Leftrightarrow \left[ \begin{array}{l}x = 2\\x = 4\end{array} \right.\)
Khi đó: \(P = {x_1}^2 + {x_2}^2 = {2^2} + {4^2} = 20.\)
Chọn đáp án A.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong các hàm số sau hàm số nào không phải là một nguyên hàm của \(f(x) = \cos x.\sin x\) ?
Tính nguyên hàm \(\int {x\sqrt {a - x} \,dx} \) ta được :
Một khối cầu có diện tích đường tròn lớn là \(2\pi \) thì diện tích của khối cầu đó là
Cho \({\log _2}5 = a,\,{\log _3}5 = b\). Khi đó \({\log _6}5\) tính theo a và b là:
Trong mặt phẳng phức, tìm tập hợp điểm M biểu diễn số phức z thỏa mãn \(|z + 1 - i| \le 3\).
Trong mặt phẳng Oxy, tập hợp các điểm biểu diễn cho số phức z thỏa mãn \({z^2}\) là một số ảo là :
Trên đồ thị hàm số \(y = {{2x - 1} \over {x + 1}}\) có bao nhiêu điểm có tọa độ nguyên ?
Cho số phức z thỏa mãn \(\overline z = \left( {1 - 3i} \right)\left( { - 2 + i} \right) = 2i\). Tính \(|z|\).
Cho số phức z = 3 + 4i. Giá trị của \(S = 2|z| - 1\) bằng bao nhiêu ?
Cho \(\int\limits_2^5 {f(x)\,dx = 10} \). Khi đó, \(\int\limits_5^2 {[2 - 4f(x)]\,dx} \) có giá trị là:
Khối chóp tam giác có thể tích \(\dfrac{{2{a^3}}}{3}\) và chiều cao \(a\sqrt 3 \) thì diện tích đáy của khối chóp bằng:
Tìm các số thực x, y thỏa mãn \(\left( {x + 2y} \right) + \left( {2x - 2y} \right)i = 7 - 4i\).
Cho tứ diện \(ABCD\) có các cạnh \(AB,AC,AD\) đôi một vuông góc với nhau, \(AB = 6a,AC = 7a,AD = 4a\). Gọi \(M,N,P\) lần lượt là trung điểm của các cạnh \(BC,CD,DB\). Thể tích V của tứ diện \(AMNP\) là:
Cho miền (D) giới hạn bởi các đường sau: \(y = \sqrt x ,\,\,y = 2 - x,\,\,y = 0\). Diện tích của miền (D) có giá tri là: