Giả sử đồ thị hàm số \(y = ({m^2} + 1){x^4} - 2m{x^2} + {m^2} + 1\) có 3 điểm cực trị là A, B, C mà \({x_A} < {x_B} < {x_c}\). Khi quay tam giác ABC quanh cạnh AC ta được một khối tròn xoay. Giá trị của \(m\) để thể tích của khối tròn xoay đó lớn nhất thuộc khoảng nào trong các khoảng dưới đây:
A. (4;6)
B. (2;4)
C. (-2;0)
D. (0;2)
Lời giải của giáo viên
\(\begin{array}{l}
y' = 4\left( {{m^2} + 1} \right){x^3} - 4mx = 4x\left[ {\left( {{m^2} + 1} \right){x^2} - m} \right]\\
+ y'\left( 0 \right)4x\left[ {\left( {{m^2} + 1} \right){x^2} - m} \right] = 0 \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x = \pm \sqrt {\frac{m}{{{m^2} + 1}}} \left( {m > 0} \right)
\end{array} \right.
\end{array}\)
+ Với m > 0 thì đồ thị hàm số có 3 điểm cực trị (với \(x_A, x_B, x_C\)) là:
\(A\left( { - \sqrt {\frac{m}{{{m^2} + 1}}} ; - \frac{{{m^2}}}{{{m^2} + 1}} + {m^2} + 1} \right);B\left( {0;{m^2} + 1} \right);C\left( {\sqrt {\frac{m}{{{m^2} + 1}}} ; - \frac{{{m^2}}}{{{m^2} + 1}} + {m^2} + 1} \right)\)
+ Quay tam giác ABC quanh AC thì được khối tròn xoay có thể tích là:
\(V = 2.\frac{1}{3}\pi {r^2}h = \frac{2}{3}\pi B{I^2}.IC = \frac{2}{3}\pi {\left( {\frac{{{m^2}}}{{{m^2} + 1}}} \right)^2}\sqrt {\frac{m}{{{m^2} + 1}}} = \frac{2}{3}\pi \sqrt {\frac{{{m^9}}}{{{{\left( {{m^2} + 1} \right)}^5}}}} \)
+ Xét hàm số \(f\left( x \right) = \frac{{{m^9}}}{{{{\left( {{m^2} + 1} \right)}^5}}}\)
Có: \(f'\left( x \right) = \frac{{{m^8}\left( {9 - {m^2}} \right)}}{{{{\left( {{m^2} + 1} \right)}^6}}};f'\left( x \right) = 0 \Leftrightarrow m = 3\left( {m > 0} \right)\)
Ta có BBT:
Vậy thể tích cần tìm lớn nhất khi m = 3
CÂU HỎI CÙNG CHỦ ĐỀ
Cho dãy số \(({u_n}):\left\{ \begin{array}{l}
{u_1} = 5\\
{u_{n + 1}} = {u_n} + n
\end{array} \right.\) . Số 20 là số hạng thứ mấy trong dãy?
Trong mặt phẳng tọa độ Oxy cho bốn điểm \(A\left( {3; - 5} \right),B\left( { - 3;3} \right),C\left( { - 1; - 2} \right),D\left( {5; - 10} \right).\) Hỏi \(G\left( {\frac{1}{3}; - 3} \right)\) là trọng tâm của tam giác nào dưới đây?
Có bao nhiêu số tự nhiên có 3 chữ số \(\overline {abc} \) sao cho a, b, c là độ dài 3 cạnh của một tam giác cân.
Tìm tập xác định của hàm số \(y = \frac{1}{{{{\log }_2}\left( {5 - x} \right)}}\)
Gọi d là tiếp tuyến tại điểm cực đại của đồ thị hàm số \(y = {x^3} - 3{x^2} + 2\). Mệnh đề nào dưới đây đúng?
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân,\(BA{\rm{ }} = {\rm{ }}BC{\rm{ }} = a,\widehat {SAB} = \widehat {SCB} = 90^\circ ,\) biết khoảng cách từ A đến mặt phẳng (SBC) bằng \(\frac{{a\sqrt 3 }}{2}\) . Góc giữa SC và mặt phẳng (ABC) là:
Hệ số của số hạng chứa \(x^6\) trong khai triển nhị thức \({\left( {\frac{3}{x} - \frac{x}{3}} \right)^{12}}\) (với \(x \ne 0\)) là:
Cho hàm số \(y = \frac{1}{4}{x^4} - 3{x^2}\) có đồ thị (C). Có bao nhiêu điểm A thuộc (C) sao cho tiếp tuyến của (C) tại A cắt (C) tại hai điểm phân biệt \(M\left( {{x_1};{y_1}} \right),N\left( {{x_2};{y_2}} \right)\) (M, N khác A) thỏa mãn \({y_1} - {y_2} = 5\left( {{x_1} - {x_2}} \right).\)
Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?
Cho phương trình \(\sin \left( {2x - \frac{\pi }{4}} \right) = \sin \left( {x + \frac{{3\pi }}{4}} \right).\) Tính tổng các nghiệm thuộc khoảng \(\left( {0;\pi } \right)\) của phương trình trên.
Giải phương trình \(8.\cos 2x.\sin 2x.\cos 4x = - \sqrt 2 .\)
Hàm số \(y = \ln \left( {{x^2} + mx + 1} \right)\) xác định với mọi giá trị của x khi