Trong không gian Oxyz, vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng (P): 2y - 3z + 1 = 0?
A. \(\overrightarrow {{u_1}} = (2;0; - 3)\)
B. \(\overrightarrow {{u_2}} = (0;2; - 3)\)
C. \(\overrightarrow {{u_3}} = (2; - 3;1)\)
D. \(\overrightarrow {{u_4}} = (2; - 3;0)\)
Lời giải của giáo viên
\(2y - 3z + 1 = 0 \Rightarrow \) VTPT của (P) là: \(\overrightarrow n = (0;2; - 3)\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, gọi d là đường thẳng qua A(1;0;2) cắt và vuông góc với đường thẳng \({d_1}:\frac{{x - 1}}{1} = \frac{y}{1} = \frac{{z - 5}}{{ - 2}}\). Điểm nào dưới đây thuộc d?
Giá trị lớn nhất của hàm số \(f(x) = \frac{{{x^2} - 8x}}{{x + 1}}\) trên đoạn [1; 3] bằng
Cho hàm số y = f(x). Hàm số y = f’(x) có bảng xét dấu như sau:
Cho hàm số y = f(x) có bảng biến thiên
Số đường tiệm cận đứng và ngang của đồ thị hàm số đã cho là
Họ nguyên hàm của hàm số \(f(x) = \frac{{x + 3}}{{{x^2} + 3x + 2}}\) là
Cho hình trụ (T) có chiều cao bằng 2a. Hai đường tròn đáy của (T) có tâm lần lượt là O và O1 và bán kính bằng a. Trên đường tròn đáy tâm O lấy điểm A, trên đường tròn đáy O1 lấy điểm B sao cho \(AB = \sqrt 5 a\). Thể tích khối tứ diện bằng:
Gieo con xúc xắc được chế tạo cân đối và đồng chất 2 lần. Gọi a là số chấm xuất hiện trong lần gieo thứ nhất, b là số chấm xuất hiện trong lần gieo thứ hai. Xác suất để phương trình \({x^2} + ax + b = 0\) có nghiệm bằng
Cho hình chóp tứ giác đều SABCD có cạnh đáy bằng 2a và chiều cao bằng . Khoảng cách từ A đến mặt phẳng (SCD) bằng:
Cho khối chóp S.ABCD có đáy ABCD là hình thoi tâm O, \(AB = a,\angle BAD = {60^ \circ },SO \bot (ABCD)\) và mặt phẳng (SCD) tạo với mặt đáy một góc bằng 600 . Thể tích khối chóp đã cho bằng:
Một lớp học có 15 bạn nam và 10 bạn nữ. Số cách chọn hai bạn trực nhật sao cho có cả nam và nữ là:
Cho số thực \(\alpha \) sao cho phương trình \({2^x} - {2^{ - x}} = 2cos(\alpha x)\) có đúng 2019 nghiệm thực. Số nghiệm của phương trình \({2^x} + {2^{ - x}} = 4 + 2cos(\alpha x)\) là:
Cho hàm số có bảng biến thiên
Hàm số đã cho đồng biến trên khoảng
Cho hàm số y = f(x) có đồ thị như hình vẽ. Số nghiệm của phương trình 2|f(x)| - 5 = 0 là
Tìm m để đường thẳng y = 2x + m cắt đồ thị hàm số \(y = \frac{{x + 3}}{{x + 1}}\) tại hai điểm M, N sao cho độ dài MN nhỏ nhất: