Các dạng toán về phép nhân và phép chia hai số nguyên

Lý thuyết về các dạng toán về phép nhân và phép chia hai số nguyên môn toán lớp 6 sách chân trời sáng tạo với nhiều dạng bài cùng phương pháp giải nhanh kèm bài tập vận dụng
(386) 1288 26/09/2022

I. Thực hiện phép tính nhân, chia hai số nguyên

Khi thực hiện phép tính ta áp dụng các quy tắc sau:

- Quy tắc nhân hai số nguyên

Với \(m,n \in {\mathbb{N}^*}\), ta có:

\(m\left( { - n} \right) = \left( { - n} \right)m =  - (m.m)\)

\(\left( { - m} \right)\left( { - n} \right) = \left( { - n} \right)\left( { - m} \right) = mn\)

- Quy tắc dấu của thương:

\(\begin{array}{l}\left(  +  \right):\left(  +  \right) = \left(  +  \right)\\\left(  -  \right):\left(  -  \right) = \left(  +  \right)\\\left(  +  \right):\left(  -  \right) = \left(  -  \right)\\\left(  -  \right):\left(  +  \right) = \left(  -  \right)\end{array}\)

Chú ý:

+ Nếu đổi dấu một thừa số thì tích $ab$ đổi dấu.

+ Nếu đổi dấu hai thừa số thì tích $ab$ không thay đổi.

Chú ý trên vẫn đúng với phép chia.

II. Áp dụng tính chất của phép nhân để tính nhanh

Phương pháp:

Bước 1: Quan sát biểu thức và nhận xét về tính chất của các số hạng và thừa số

Bước 2: Áp dụng các tính chất giao hoán, kết hợp và tính chất phân phối của phép nhân đối với phép cộng để tính toán được thuận lợi, dễ dàng.

Sử dụng các tính chất sau đây:

\(a.0 = 0\)

\(a.b = b.a\)

 $a.\left( {b + c} \right) = ab + ac.$       

$a.\left( {b - c} \right) = ab-ac.$

Ví dụ:

a) Tính nhanh: \(A = ( - 4).74.25\)

\(\begin{array}{l}A = ( - 4).74.25\\A = ( - 4).25.74\\A = - 100.74\\A = - 7400\end{array}\)

b) Tính hợp lí: \(B = 30.\left( { - 125} \right) + 25.30\)

 \(\begin{array}{l}B = 30.\left( { - 125} \right) + 25.30\\B = 30.\left[ {\left( { - 125} \right) + 25} \right]\\B = 30.\left( { - 100} \right)\\B = - 3000.\end{array}\).

III. Bài toán đưa về thực hiện phép nhân (chia) hai số nguyên

Bước 1: Căn cứ vào đề bài, suy luận để đưa về phép nhân (chia) hai số nguyên.

Bước 2: Thực hiện phép nhân (chia) hai số nguyên.

Bước 3: Kết luận.

IV. Tìm các số nguyên x,y sao cho x.y = a (a thuộc Z)

Phương pháp

 - Phân tích số nguyên $a$ thành tích hai số nguyên bằng tất cả các cách có thể.

- Từ đó tìm được $x,y.$

Ví dụ:

Tìm số nguyên \(x,y\) thỏa mãn \(\left( {x - 1} \right)\left( {y + 1} \right) = 3\)

Ta có: \(3 = ( - 1).( - 3) = 1.3\) nên ta có 4 trường hợp sau:

TH1: \(x - 1 = - 1\) và \(y + 1 = - 3\) suy ra \(x = 0\) và \(y = - 4\)

TH2: \(x - 1 = - 3\) và \(y + 1 = - 1\) suy ra \(x = - 2\) và \(y = - 2\)

TH3: \(x - 1 = 1\) và \(y + 1 = 3\) suy ra \(x = 2\) và \(y = 2\)

TH4: \(x - 1 = 3\) và \(y + 1 = 1\) suy ra \(x = 4\) và \(y = 0\)

Vậy \(\left( {x;y} \right) \in \left\{ {\left( {0;\,\, - 4} \right);\,\left( { - 2;\, - 2} \right);\left( {2;\,2} \right);\left( {4;0} \right)} \right\}\).

V. Bài toán tìm x và tìm số chưa biết trong đẳng thức dạng A.B = 0

- Bài toán tìm x:

+ Muốn tìm số hạng ta lấy tích chia cho số hạng còn lại.

+ Muốn tìm số chia ta lấy sô bị chia chia cho thương.

+ Muốn tìm số bị chia ta lấy thương nhân số chia.

- Dạng toán \(A.B=0\)

+ Nếu $A.B = 0$ thì $A = 0$ hoặc $B = 0.$

+ Nếu $A.B = 0$ mà $A$ (hoặc $B$ ) khác $0$ thì $B$ ( hoặc $A$ ) bằng $0.$

Ví dụ: Tìm \(x\) biết: \(\left( {x - 2} \right).\left( {x + 5} \right) = 0\)

\(\left( {x - 2} \right).\left( {x + 5} \right) = 0 \Rightarrow \)\(x - 2 = 0\) hoặc \(x + 5 = 0\)

Suy ra \(x = 2\) hoặc \(x = - 5\)

Vậy \(x \in \left\{ {2;\, - 5} \right\}\).

(386) 1288 26/09/2022