Lời giải của giáo viên
Ta có \(m{{.2}^{{{x}^{2}}-5x+6}}+{{2}^{1-{{x}^{2}}}}={{2.2}^{6-5x}}+m\Leftrightarrow m{{.2}^{{{x}^{2}}-5x+6}}+{{2}^{1-{{x}^{2}}}}={{2}^{7-5x}}+m\)
\(\Leftrightarrow m\left( {{2}^{{{x}^{2}}-5x+6}}-1 \right)+{{2}^{1-{{x}^{2}}}}\left( 1-{{2}^{{{x}^{2}}-5x+6}} \right)=0\Leftrightarrow \left( {{2}^{{{x}^{2}}-5x+6}}-1 \right)\left( m-{{2}^{1-{{x}^{2}}}} \right)=0.\)
\( \Leftrightarrow \left[ \begin{array}{l} {2^{{x^2} - 5x + 6}} - 1 = 0\\ {2^{1 - {x^2}}} = m \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 2\\ x = 3\\ {2^{1 - {x^2}}} = m{\rm{ }}\left( * \right) \end{array} \right..\)
Yêu cầu bài toán tương đương với
TH1: Phương trình \(\left( * \right)\) có nghiệm duy nhất \(\left( x=0 \right)\), suy ra \(m=2.\)
TH2: Phương trình \(\left( * \right)\) có hai nghiệm phân biệt, trong đó có một nghiệm là 2 và nghiệm còn lại khác 3\(\xrightarrow{{}}m={{2}^{-3}}.\)
TH3: Phương trình \(\left( * \right)\) có hai nghiệm phân biệt, trong đó có một nghiệm là 3 và nghiệm còn lại khác \(2\xrightarrow{{}}m={{2}^{-8}}.\)
Vậy có tất cả ba giá trị \(m\) thỏa mãn.
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm tập xác định \(\text{D}\) của hàm số \(y=\frac{1}{\sqrt{2-x}}+\ln \left( x-1 \right)\).
Cho lăng trụ \(ABCD.A'B'C'D'\) có đáy \(ABCD\) là hình chữ nhật tâm \(O\) và \(AB=a\), \(AD=a\sqrt{3}\); \(A'O\) vuông góc với đáy \(\left( ABCD \right)\). Cạnh bên \(AA'\) hợp với mặt đáy \(\left( ABCD \right)\) một góc \({{45}^{0}}\). Tính theo \(a\) thể tích \(V\) của khối lăng trụ đã cho.
Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số \(y=-2{{x}^{3}}+3{{x}^{2}}+1\).
Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng \(a\). Thể tích khối trụ bằng:
Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
Trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hàm số nào có bảng biến thiên sau?
Hàm số \(y=\frac{1}{2}{{x}^{4}}-3{{x}^{2}}-3\) nghịch biến trên các khoảng nào ?
Cho hai số thực b và c \(\left( c>0 \right)\). Kí hiệu A, B là hai điểm của mặt phẳng phức biểu diễn hai nghiệm phức của phương trình \({{z}^{2}}+2bz+c=0\). Tìm điều kiện của b và c để tam giác OAB là tam giác vuông (O là gốc tọa độ).
Tính giá trị của biểu thức \(P={{\log }_{a}}\left( a.\sqrt[3]{a\sqrt{a}} \right)\) với \(0<a\ne 1.\)
Tìm nguyên hàm của hàm số\(f\left( x \right)={{x}^{3}}\ln \left( \frac{4-{{x}^{2}}}{4+{{x}^{2}}} \right)\) ?
Trong không gian với hệ tọa độ Oxyz, cho điểm \(A\left( 1;2;1 \right)\) và mặt phẳng \(\left( P \right):x+2y-2z-1=0.\) Gọi B là điểm đối xứng với A qua \(\left( P \right)\). Độ dài đoạn thẳng AB là
Gọi S là tập hợp tất cả các số tự nhiên có 7 chữ số. Lấy ngẫu nhiên một số từ tập S. Xác suất để số lấy được có tận cùng là 3 và chia hết cho 7 (làm tròn đến chữ số phần nghìn) có dạng \(\overline{0,\,abc}\). Tính \({{a}^{2}}+{{b}^{2}}+{{c}^{2}}\).
Cho x, y>0 thỏa mãn \(\log \left( x+2y \right)=\log \left( x \right)+\log \left( y \right)\). Khi đó, giá trị nhỏ nhất của biểu thức \(P=\frac{{{x}^{2}}}{1+2y}+\frac{4{{y}^{2}}}{1+x}\) là:
Cho hàm số \(y=\frac{x+2}{x-1}\) có đồ thị (C). Chọn mệnh đề sai?