Lời giải của giáo viên
Để bất phương trình đúng với mọi \(x\) khi và chỉ khi:
● Bất phương trình xác định với mọi \(x\Leftrightarrow m{{x}^{2}}+4x+m>0,\text{ }\forall x\in \mathbb{R}\)
\( \Leftrightarrow \left\{ \begin{array}{l} m > 0\\ \Delta ' < 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} m > 0\\ 4 - {m^2} < 0 \end{array} \right. \Leftrightarrow m > 2.\) (1)
● Bất phương trình nghiệm đúng với mọi \(x\Leftrightarrow \log \left( 5{{x}^{2}}+5 \right)\ge \log \left( m{{x}^{2}}+4x+m \right),\text{ }\forall x\in \mathbb{R}\)
\(\begin{array}{l} \Leftrightarrow 5{x^2} + 5 \ge m{x^2} + 4x + m,{\rm{ }}\forall x \in R\\ \Leftrightarrow \left( {5 - m} \right){x^2} - 4x + 5 - m \ge 0,{\rm{ }}\forall x \in R \end{array}\)
\( \Leftrightarrow \left\{ \begin{array}{l} 5 - m > 0\\ \Delta ' \le 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} m < 5\\ - {m^2} + 10m - 21 \le 0 \end{array} \right. \Leftrightarrow m \le 3.\) (2)
Từ (1) và (2), ta được \(2<m\le 3\xrightarrow{m\in \mathbb{Z}}m=3.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm tập xác định \(\text{D}\) của hàm số \(y=\frac{1}{\sqrt{2-x}}+\ln \left( x-1 \right)\).
Cho lăng trụ \(ABCD.A'B'C'D'\) có đáy \(ABCD\) là hình chữ nhật tâm \(O\) và \(AB=a\), \(AD=a\sqrt{3}\); \(A'O\) vuông góc với đáy \(\left( ABCD \right)\). Cạnh bên \(AA'\) hợp với mặt đáy \(\left( ABCD \right)\) một góc \({{45}^{0}}\). Tính theo \(a\) thể tích \(V\) của khối lăng trụ đã cho.
Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số \(y=-2{{x}^{3}}+3{{x}^{2}}+1\).
Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng \(a\). Thể tích khối trụ bằng:
Hàm số \(y=\frac{1}{2}{{x}^{4}}-3{{x}^{2}}-3\) nghịch biến trên các khoảng nào ?
Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
Trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hàm số nào có bảng biến thiên sau?
Cho hai số thực b và c \(\left( c>0 \right)\). Kí hiệu A, B là hai điểm của mặt phẳng phức biểu diễn hai nghiệm phức của phương trình \({{z}^{2}}+2bz+c=0\). Tìm điều kiện của b và c để tam giác OAB là tam giác vuông (O là gốc tọa độ).
Tính giá trị của biểu thức \(P={{\log }_{a}}\left( a.\sqrt[3]{a\sqrt{a}} \right)\) với \(0<a\ne 1.\)
Tìm nguyên hàm của hàm số\(f\left( x \right)={{x}^{3}}\ln \left( \frac{4-{{x}^{2}}}{4+{{x}^{2}}} \right)\) ?
Trong không gian với hệ tọa độ Oxyz, cho điểm \(A\left( 1;2;1 \right)\) và mặt phẳng \(\left( P \right):x+2y-2z-1=0.\) Gọi B là điểm đối xứng với A qua \(\left( P \right)\). Độ dài đoạn thẳng AB là
Gọi S là tập hợp tất cả các số tự nhiên có 7 chữ số. Lấy ngẫu nhiên một số từ tập S. Xác suất để số lấy được có tận cùng là 3 và chia hết cho 7 (làm tròn đến chữ số phần nghìn) có dạng \(\overline{0,\,abc}\). Tính \({{a}^{2}}+{{b}^{2}}+{{c}^{2}}\).
Cho x, y>0 thỏa mãn \(\log \left( x+2y \right)=\log \left( x \right)+\log \left( y \right)\). Khi đó, giá trị nhỏ nhất của biểu thức \(P=\frac{{{x}^{2}}}{1+2y}+\frac{4{{y}^{2}}}{1+x}\) là:
Cho hàm số \(y=\frac{x+2}{x-1}\) có đồ thị (C). Chọn mệnh đề sai?