Cho hình lăng trụ tứ giác đều ABCD.A'B'C'D'. Biết \(AC=2a\) và cạnh bên \(AA'=a\sqrt{2}.\) Thể tích lăng trụ đó là:
lượt xem
Hàm số \(y=\left| {{\left( x-1 \right)}^{3}}\left( x+1 \right) \right|\) có bao nhiêu điểm cực trị?
lượt xem
Hàm số nào trong bốn hàm số sau có bảng biến thiên như hình vẽ sau?
lượt xem
Cho hình hộp chữ nhật ABCD.A'B'C'D' có \(AB=a,AD=b,AA'=c.\) Tính thể tích V của khối lăng trụ ABC.A'B'C'.
lượt xem
Tìm tất cả các đường tiệm cận ngang của đồ thị hàm số \(y=\frac{\left| x \right|}{\sqrt{{{x}^{2}}-1}}.\)
lượt xem
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng \(a\) và mặt bên tạo với đáy một góc 45°. Thể tích \(V\) của khối chóp S.ABCD là:
lượt xem
Cho hàm số \(y=f\left( x \right)\) có đạo hàm liên tục trên khoảng K và có đồ thị là đường cong (C). Viết phương trình tiếp tuyến của (C) tại điểm \(M\left( a;f\left( x \right) \right),\left( a\in K \right).\)
lượt xem
lượt xem
Gọi S là tập hợp tất cả các giá trị nguyên của tham số \(m\) để hàm số \(y={{x}^{4}}-\left( {{m}^{2}}-9 \right){{x}^{2}}+2021\) có 1 cực trị. Số phần tử của tập S là:
lượt xem
Tìm giá trị thực của tham số \(m\) để đường thẳng \(d:y=\left( 3m+1 \right)x+3+m\) vuông góc với đường thẳng đi qua hai điểm cực trị của đồ thị hàm số \(y={{x}^{3}}-3{{x}^{2}}-1.\)
lượt xem
Nhận định nào dưới đây là đúng?
lượt xem
Số các giá trị của tham số \(m\) để hàm số \(y=\frac{x-{{m}^{2}}-1}{x-m}\) có giá trị lớn nhất trên [0;4] bằng \(-6\) là:
lượt xem
Số cạnh của một hình lăng trụ có thể là số nào dưới đây?
lượt xem
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng xét dấu của đạo hàm như hình vẽ. Hàm số đã cho có bao nhiêu điểm cực trị?
lượt xem
Tìm tất cả các giá trị của tham số \(m\) để hàm số \(y={{x}^{3}}-3{{x}^{2}}+mx\) đạt cực tiểu tại \(x=2\)?
lượt xem
Cho lăng trụ đứng ABC.A'B'C' có cạnh BC = 2a, góc giữa hai mặt phẳng (ABC) và (A'BC) bằng 60°. Biết diện tích tam giác A'BC bằng \(2{{a}^{3}}.\) Tính thể tích khối lăng trụ ABC.A'B'C'.
lượt xem
Cho hàm số \(y=\frac{2x+1}{x-1}.\) Đường tiệm cận đứng của đồ thị hàm số là:
lượt xem
lượt xem
Cho hình chóp tứ giác đều có cạnh đáy bằng \(a\) và cạnh bên bằng \(a\sqrt{3}.\) Tính thể tích \(V\) của khối chóp đó theo \(a.\)
lượt xem
lượt xem
lượt xem
Cho hàm số \(y=\frac{x-1}{x+1}\) có đồ thị là (C). Tiếp tuyến của (C) tại giao điểm của đồ thị với trục tung có phương trình là:
lượt xem
Gọi S là tập hợp các giá trị nguyên dương của m để hàm số \(y={{x}^{3}}-3\left( 2m+1 \right){{x}^{2}}+\left( 12m+5 \right)x+2\) đồng biến trên khoảng \(\left( 2;+\infty \right).\) Số phần tử của S bằng:
lượt xem
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy và \(SA=2\sqrt{3}a.\) Tính thể tích V của khối chóp S.ABC.
lượt xem
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, cạnh bên \(SA=a\sqrt{5},\) mặt bên SAB là tam giác cân đỉnh S và thuộc mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách giữa hai đường thẳng AD và SC bằng:
lượt xem
Cho hàm số \(f\left( x \right)={{x}^{3}}-3{{x}^{2}}+1\). Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số \(y=\left| f\left( \sin x+\sqrt{3}\cos x \right)+m \right|\) có giá trị nhỏ nhất không vượt quá 5?
lượt xem
Biết đường thẳng \(y=\left( 3m-1 \right)x+6m+3\) cắt đồ thị hàm số \(y={{x}^{3}}-3{{x}^{2}}+1\) tại ba điểm phân biệt sao cho một giao điểm cách đều hai giao điểm còn lại. Khi đó m thuộc khoảng nào dưới đây?
lượt xem
Cho hàm số \(y={{x}^{3}}-\frac{3}{2}{{x}^{2}}+1.\) Gọi M là giá trị lớn nhất của hàm số trên \(\left( -25;\frac{11}{10} \right).\) Tìm M.
lượt xem
Cho hàm số \(y=\sqrt{3x-{{x}^{2}}}.\) Hàm số đồng biến trên khoảng nào?
lượt xem
Cho lăng trụ đứng tam giác ABC.A'B'C'. Biết tam giác ABC đều cạnh a và \(AA'=a\sqrt{3}.\) Góc giữa hai đường thẳng AB' và mặt phẳng (A'B'C') bằng bao nhiêu?
lượt xem
Tính thể tích V của khối lập phương ABCD.A'B'C'D'. Biết \(AC'=a\sqrt{3}.\)
lượt xem
lượt xem
Đồ thị trong hình là của hàm số nào?
lượt xem
Cho hình chóp S.ABCD có đáy là hình chữ nhật với \(AB=2a,AD=a.\) Tam giác SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy. Góc giữa mặt phẳng (SBC) và (ABCD) bằng 45°. Khi đó thể tích khối chóp S.ABCD là:
lượt xem
Tìm m để hàm số \(y=\frac{1}{3}{{x}^{3}}-m{{x}^{2}}+\left( {{m}^{2}}-m+1 \right)x+1\) đạt cực đại tại \(x=1.\)
lượt xem
Cho hình chóp S.ABCD có đáy là hình vuông cạnh \(a,SA\bot \left( ABCD \right),SA=a.\) Gọi G là trọng tâm tam giác ABD, khi đó khoảng cách từ điểm G đến mặt phẳng (SBC) bằng:
lượt xem
Có tất cả 120 các chọn 3 học sinh từ nhóm n (chưa biết) học sinh. Số n là nghiệm của phương trình nào sau đây?
lượt xem
Khoảng cách giữa hai điểm cực của đồ thị hàm số \(y=-{{x}^{3}}+3x+2\) bằng:
lượt xem
Đồ thị hàm số \(y=\frac{{{x}^{4}}}{2}-{{x}^{2}}+3\) có mấy điểm cực trị
lượt xem
lượt xem
Tìm tất cả các giá trị của tham số \(a\) để đồ thị hàm số \(y=\frac{{{x}^{2}}+2}{{{x}^{3}}+a{{x}^{2}}}\) có 3 đường tiệm cận.
lượt xem
Cho đồ thị hàm số \(y=\frac{\sqrt{4-{{x}^{2}}}}{{{x}^{2}}-3x-4}\) có tất cả bao nhiêu đường tiệm cận?
lượt xem
Có bao nhiêu số có ba chữ số đôi một khác nhau mà các chữ số đó thuộc tập hợp \(\left\{ 1;2;3;...;9 \right\}?\)
lượt xem
Cho hình chóp S.ABCD đáy là hình chữ nhật có \(AB=2a\sqrt{3},AD=2a.\) Mặt bên (SAB) là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp S.ABD là:
lượt xem
Cho hàm số \(y=a{{x}^{4}}+b{{x}^{2}}+c\) có đồ thị như hình vẽ bên.
Mệnh đề nào dưới đây đúng?
lượt xem
lượt xem
Một hộp đựng 40 tấm thẻ được đánh số thứ tự từ 1 đến 40. Rút ngẫu nhiên 10 tấm thẻ. Tính xác suất để lấy được 5 tấm thẻ mang số lẻ và 5 tấm thẻ mang số chẵn, trong đó có đúng một thẻ mang số chia hết cho 6.
lượt xem
Cho hình chóp \(S.ABC\) có \(SA\bot \left( ABC \right)\) và \(AB\bot BC.\) Góc giữa hai mặt phẳng (SBC) và (ABC) là góc nào sau đây?
lượt xem
lượt xem
lượt xem