Các dạng toán về phép cộng, phép trừ các số nguyên (tiếp)
I. Bài toán liên quan đến phép cộng, trừ số nguyên
- Bước 1: Căn cứ vào yêu cầu của đề bài suy luận để quy về phép cộng (trừ) hai số nguyên
- Bước 2: Thực hiện phép tính
- Bước 3: Kết luận.
Ví dụ:
Nhiệt độ ở Sa Pa vào buổi trưa là \({2^0}C\), đến tối nhiệt độ giảm \({4^o}C\). Tính nhiệt độ buổi tối tại SaPa.
Do nhiệt độ buổi tối giảm \({4^o}C\) so với buổi trưa nên ta sử dụng phép trừ
Do nhiệt độ buổi tối giảm \({4^o}C\) so với buổi trưa nên ta có: \(2 - 4 = - 2\,\,\left( {^oC} \right)\)
Vậy nhiệt độ buổi tối tại SaPa là \( - {2^o}C\).
II. Tính giá trị biểu thức chứa phép cộng trừ các số nguyên tại một giá trị x cho trước
- Bước 1: Thay giá trị của ẩn vào biểu thức
- Bước 2: Áp dụng quy tắc cộng (trừ) hai số nguyên để thự hiện tính giá trị biểu thức.
- Bước 3: Kết luận.
Ví dụ:
Tính giá trị của \(M = 12 - x\) tại \(x = 20\)
Bước 1: Thay \(x = 20\) vào \(M\) ta được:
Bước 2:
\(\begin{array}{l}M = 12 - x\\M = 12 - 20\\M = - 8\end{array}\).
Vậy tại \(x = 20\) thì \(M=-8\).
III. Tính tổng tất cả các số nguyên thuộc khoảng cho trước
- Bước 1: Liệt kê tất cả các số nguyên trong khoảng cho trước
- Bước 2: Tính tổng tất cả các số nguyên đó, chú ý nhóm từng cặp số đối nhau bằng cách sử dụng tính chất giao hoán và kết hợp.
Ví dụ:
Tính tổng các số nguyên thỏa mãn: \( - 5 < x \le 3\)
Bước 1: Theo đề bài có \( - 5 < x \le 5\) nên \(x \in \left\{ { - 4;\, - 3;\, - 2;\, - 1;\,0;\,1;\,2;\,3} \right\}\)
Bước 2: Ta có:
\(\begin{array}{l}\left( { - 4} \right) + \left( { - 3} \right) + \left( { - 2} \right) + \left( { - 1} \right) + 0 + 1 + 2 + 3\\ = \left( { - 4} \right) + \left[ {\left( { - 3} \right) + 3} \right] + \left[ {\left( { - 2} \right) + 2} \right] + \left[ {\left( { - 1} \right) + 1} \right] + 0\\ = \left( { - 4} \right) + 0 + 0 + 0 + 0\\ = - 4\end{array}\).