Hình có tâm đối xứng
I. Thế nào là hình có tâm đối xứng
Các hình có đặc điểm:
Mỗi hình có một điểm O, mà khi quay hình đó xung quanh điểm O đúng một nửa vòng thì hình thu được chồng khít với chính nó ở vị trí ban đầu (trước khi quay).
Những hình như thế được gọi là hình có tâm đối xứng và điểm O được gọi là tâm đối xứng của hình.
Ví dụ:
+ Các hình tròn và chong chóng bốn cánh dưới đây là các hình có tâm đối xứng vì khi quay nửa vòng quanh điểm O thì hình thu được chồng khít với chính nó ở vị trí ban đầu.
+ Ta thấy hình chong chóng ba cánh khi quay nửa vòng quanh điểm O thì hình thu được không chồng khít với chính nó ở vị trí ban đầu => Hình này không có tâm đối xứng.

II. Tâm đối xứng của một số hình phẳng
1.
Đoạn thẳng AB là hình có tâm đối xứng và tâm đối xứng là trung điểm M của đoạn thẳng
Đường tròn là hình có tâm đối xứng và tâm đối xứng là tâm của nó.

2.
- Tâm đối xứng của hình bình hành, hình thoi, hình vuông, hình chữ nhật là giao điểm của hai đường chéo.
- Tâm đối xứng của hình lục giác đều là giao điểm của các đường chéo chính.
