Tam giác đều. Hình lục giác đều

Lý thuyết về tam giác đều. hình lục giác đều môn toán lớp 6 sách Cánh Diều với nhiều dạng bài cùng phương pháp giải nhanh kèm bài tập vận dụng
(398) 1326 26/09/2022

I. Tam giác đều

1. Nhận biết tam giác đều

Trong tam giác đều:

+ Ba cạnh bằng nhau

+ Ba góc bằng nhau.

Ví dụ:

Tam giác đều \(ABC\) có:

+ Ba cạnh bằng nhau: \(AB = BC = CA\).

+ Ba góc ở các đỉnh \(A,B,\,C\) bằng nhau.

2. Vẽ tam giác đều

Cách vẽ tam giác đều cạnh \(a\,(cm)\) bằng thước và compa:

Bước 1. Dùng thước vẽ đoạn thẳng AB = a cm

Bước 2. Lấy A làm tâm, dùng compa vẽ một phần đường tròn có bán kính AB

Bước 3. Lấy B làm tâm, dùng compa vẽ một phần đường tròn có bán kính BA; gọi C là giao

điểm của hai phần đường tròn vừa vẽ.

Bước 4. Dùng thước vẽ các đoạn thẳng AC và BC.

II. Lục giác đều

Lục giác đều \(ABCDEF\) có:

- Sáu đỉnh A, B, C, D, E, F

- Sáu cạnh bằng nhau: \(AB = BC = CD = DE = EF\).

- Sáu góc ở các đỉnh A, B, C, D, E, F bằng nhau.

- Ba đường chéo chính bằng nhau \(AD = BE = CF\).

Chú ý:

Cho hình lục giác đều \(MNPQRH\) như hình vẽ:

- MP, PR, MR, NQ, QH, HN được gọi là các đường chéo phụ của hình lục giác đều.

- Độ dài các đường chéo phụ bằng nhau.

- Các đường chéo chính cắt nhau tại 1 điểm.

- Mỗi góc của hình lục giác đều bằng \({120^0}\).

(398) 1326 26/09/2022