Đề thi thử THPT QG môn Toán năm 2019 - Sở GD & ĐT Bắc Ninh lần 2
Đề thi thử THPT QG môn Toán năm 2019 - Sở GD & ĐT Bắc Ninh lần 2
-
Hocon247
-
50 câu hỏi
-
90 phút
-
53 lượt thi
-
Trung bình
Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com
Số giao điểm của đồ thị hàm số \(y = {x^4} - 5{x^2} + 4\) với trục hoành là
Xét phương trình hoành độ giao điểm: \({x^4} - 5{x^2} + 4 = 0 \Leftrightarrow \left( {{x^2} - 4} \right)\left( {{x^2} - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}
x = \pm 2\\
x = \pm 1
\end{array} \right..\)
Vậy số giao điểm của đồ thị hàm số đã cho với trục hoành là 4.
Hàm số nào sau đây không có điểm cực trị?
Xét đáp án A ta có \(y' = 3{x^2} + 3 > 0,\forall x \in R \Rightarrow \) Hàm số không có cực trị.
Cắt khối trụ bởi một mặt phẳng qua trục ta được thiết diện là hình chữ nhật ABCD có AB và CD thuộc hai đáy của hình trụ, AB = 4a, AC = 5a. Thể tích khối trụ là
Ta có: \(BC = \sqrt {A{C^2} - A{B^2}} = \sqrt {25{a^2} - 16{a^2}} = 3a\) (Định lí Pytago)
Do đó khối trụ có bán kính đáy \(r = \frac{{AB}}{2} = 2a,\) chiều cao \(h = AC = 3a.\)
\( \Rightarrow {V_{tru}} = \pi .{r^2}h = \pi {\left( {2a} \right)^2}.3a = 12\pi {a^3}.\)
Cho hinh chóp S.ABC có SA vuông góc với đáy. Tam giác ABC vuông cân tại B , biết SA = AC = 2a. Thể tích khối chóp S.ABC là
Do \(\Delta ABC\) vuông cân tại B có \(AC = 2a \Rightarrow AB = BC = \frac{{AC}}{{\sqrt 2 }} = a\sqrt 2 .\)
\( \Rightarrow {V_{S.ABC}} = \frac{1}{3}SA.\frac{1}{2}BA.BC = \frac{1}{6}.2a.a\sqrt 2 .a\sqrt 2 = \frac{{2{a^3}}}{3}.\)
Cho \(k,n\left( {k < n} \right)\) là các số nguyên dương. Mệnh đề nào sau đây SAI?
Ta có:
\(C_n^k = C_n^{n - k},C_n^k = \frac{{n!}}{{k!\left( {n - k} \right)!}};A_n^k = k!C_n^k\) là các công thức đúng.
Cho hình lăng trụ ABC.A'B'C' có thể tích bằng V . Gọi M là trung điểm cạnh BB' điểm N thuộc cạnh CC' sao cho CN = 2C'N Tính thể tích khối chóp A.BCNM theo V,
Ta có
\(\begin{array}{l}
{S_{BCC'B'}} = d\left( {B';CC'} \right).CC'\\
{S_{BMNC}} = \frac{{\left( {BM + CN} \right)d\left( {B;CC'} \right)}}{2}\\
= \frac{1}{2}d\left( {B;CC'} \right)\left( {\frac{1}{2}CC' + \frac{2}{3}CC'} \right) = \frac{7}{{12}}d\left( {B;CC'} \right).CC'\\
\Rightarrow \frac{{{S_{BMNC}}}}{{{S_{BCC'B'}}}} = \frac{7}{{12}} \Rightarrow \frac{{{V_{A.BMNC}}}}{{{V_{A.BCC'B'}}}} = \frac{7}{{12}} \Rightarrow {V_{A.BMNC}} = \frac{7}{{12}}{V_{A.BCC'B'}}.
\end{array}\)
Mà \({V_{A.BCC'B'}} = \frac{2}{3}V \Rightarrow {V_{A.BMNC}} = \frac{7}{{12}}.\frac{2}{3}V = \frac{7}{{18}}V.\)
Cho hàm số \(y = {x^3} - 3x + 1.\) Mệnh đề nào sau đây đúng?
TXĐ: D = R. Ta có \(y' = 3{x^2} - 3 = 0 \Leftrightarrow x = \pm 1.\)
Bảng xét dấu y’:
\( \Rightarrow \) Hàm số đã cho đồng biến trên \(\left( { - \infty ; - 1} \right)\) và \(\left( {1; + \infty } \right).\) và nghịch biến trên (-1;1).
Cho tứ diện ABCD, gọi \(G_1, G_2\) lần lượt là trọng tâm các tam giác BCD và ACD. Mệnh đề nào sau đây SAI?
Gọi M là trung điểm của CD ta có :
B, G1 , M thẳng hàng A, G2, M thẳng hàng
\( \to B{G_2},A{G_2},CD\) đồng quy tại M, do đó đáp án D đúng.
Ta có: \(\frac{{MG{}_1}}{{MB}} = \frac{{M{G_2}}}{{MA}} = \frac{1}{3} \Rightarrow {G_1}{G_2}//AB\) (Định lí Ta-lét đảo).
Mà \(AB \subset (ABD),AB \subset (ABC) \Rightarrow {G_1}{G_2}//(ABD),{G_1}{G_2}//(ABC)\), do đó các đáp án A, B đúng.
Tìm họ nguyên hàm của hàm số \(f\left( x \right) = {x^2}{e^{{x^3} + 1}}.\)
\(\int {f\left( x \right)dx} = \int {{x^2}{e^{{x^3} + 1}}dx} .\)
Đặt \(t = {x^3} + 1 \Rightarrow dt = 3{x^2}dx \Rightarrow {x^2}dx = \frac{{dt}}{3}\)
\( \Rightarrow \int {f\left( x \right)dx} = \int {\frac{{{e^t}dt}}{3} = \frac{1}{3}{e^t} + C = \frac{1}{3}{e^{{x^2} + 1}} + C.} \)
Phương trình \({7^{2{x^2} + 6x + 4}} = 49\) có tổng tất cả các nghiệm bằng
Ta có \({7^{2{x^2} + 5x + 4}} = 49 = {7^2} \Leftrightarrow 2{x^2} + 5x + 4 = 2 \Leftrightarrow \left[ \begin{array}{l}
x = - \frac{1}{2}\\
x = - 2
\end{array} \right..\)
Vậy tổng các nghiệm của phương trình là \( - \frac{1}{2} - 2 = \frac{{ - 5}}{2}.\)
Đường cong như hình vẽ là đồ thị của hàm số nào?
Đồ thị hàm số đã cho là hàm đa thức bậc ba có a > 0 do \(\mathop {\lim }\limits_{x \to + \infty } y = + \infty \Rightarrow \) Loại đáp án A.
Đồ thị hàm số đi qua điểm \(\left( {2;1} \right) \Rightarrow \) Loại các đáp án B và D.
Cho hình chóp đều .S ABCD có cạnh AB = a, góc giữa đường thẳng SA và mặt phẳng ABC bằng \(45^0\). Thể tích khối chóp S.ABCD là
Gọi \(O = AC \cap BD\) ta có \(SO \bot (ABCD).\)
\( \Rightarrow \angle \left( {SA;(ABC)} \right) = \angle \left( {SA;(ABCD)} \right) = \angle SAO = {45^0} \Rightarrow SO = OA = \frac{{a\sqrt 2 }}{2}.\)
\( \Rightarrow {V_{S.ABCD}} = \frac{1}{3}SO.{S_{ABCD}} = \frac{1}{3}.\frac{{a\sqrt 2 }}{2}.{a^2} = \frac{{{a^3}\sqrt 2 }}{6}.\)
Mệnh đề nào sau đây đúng?
Sử dụng phương pháp nguyên hàm từng phần \(\int {udv} = uv - \int {vdu} + C.\)
Khối đa diện nào có số đỉnh nhiều nhất?
Bảng tóm tắt của năm loại khối đa diện đều
Loại |
Tên gọi |
Số đỉnh |
Số cạnh |
Số mặt |
{3;3} |
Tứ diện đều |
4 |
6 |
4 |
{4;3} |
Lập phương |
8 |
12 |
6 |
{3;4} |
Bát diện đều |
6 |
12 |
8 |
{5;3} |
Mười hai mặt đều |
20 |
30 |
12 |
{3;5} |
Hai mươi mặt đều |
12 |
30 |
20 |
Khối đa diện đều có nhiều đỉnh nhất là khối nhị thập diện đều (12 mặt đều) với 20 đỉnh.
Họ nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{{5x + 4}}\) là
Ta có \(\int {\frac{{dx}}{{5x + 4}}} = \frac{1}{5}\ln \left| {5x + 4} \right| + C.\)
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, SA vuông góc với mặt phẳng ABC và AB = 2, AC = 4, \(SA = \sqrt 3 .\) Mặt cầu đi qua các đỉnh của hình chóp S.ABC có bán kính là
Xét tam giác vuông ABC ta có \(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{2^2} + {4^2}} = 2\sqrt 5 .\)
Tam giác ABC vuông tại A nên nội tiếp đường tròn đường kính BC.
Gọi Rday là bán kính đường tròn ngoại tiếp tam giác \(ABC \Rightarrow {R_{day}} = \frac{{BC}}{2} = \sqrt 5 .\)
Sử dụng công thức tính nhanh bán kính mặt cầu ngoại tiếp chóp S.ABC có \(SA \bot \left( {ABC} \right):\)
\(R = \sqrt {\frac{{S{A^2}}}{4} + S_{day}^2} = \sqrt {\frac{5}{4} + 5} = \frac{5}{2}.\)
Số đường tiệm cận của đồ thị hàm số \(y = \frac{{{x^2} - x + 1}}{{{x^2} - x - 2}}\) là
Ta có:
\(\mathop {\lim }\limits_{x \to \pm \infty } y = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{{x^2} - x + 1}}{{{x^2} - x - 2}} = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{1 - \frac{1}{x} + \frac{1}{{{x^2}}}}}{{1 - \frac{1}{x} - \frac{2}{{{x^2}}}}} = 1 \Rightarrow y = 1\) là TCN của đồ thị hàm số.
\(\left\{ \begin{array}{l}
\mathop {\lim }\limits_{x \to 2} y = \mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - x + 1}}{{{x^2} - x - 2}} = \infty \\
\mathop {\lim }\limits_{x \to - 1} y = \mathop {\lim }\limits_{x \to - 1} \frac{{{x^2} - x + 1}}{{{x^2} - x - 2}} = \infty
\end{array} \right. \Rightarrow x = 2,x = - 1\) là các đường TCĐ của đồ thị hàm số.
Vậy đồ thị hàm số đã cho có 3 đường tiệm cận.
Cho khối nón có bán kính đáy \(r = \sqrt 3 \) và chiều cao h = 4. Tính thể tích V của khối nón đã cho.
Thể tích khối nón là \(V = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi {\left( {\sqrt 3 } \right)^2}.4 = 4\pi .\)
Tìm tập xác định D của hàm số \(y = {\left( {{x^2} - 3x - 4} \right)^{\sqrt {2 - \sqrt 3 } }}.\)
Vì \(\sqrt {2 - \sqrt 3 } \notin Z \Rightarrow \) Hàm số xác định \( \Leftrightarrow {x^2} - 3x - 4 > 0 \leftrightarrow \left[ \begin{array}{l}
x > 4\\
x < - 1
\end{array} \right..\)
Vậy TXĐ của hàm số là \(D = \left( { - \infty ; - 1} \right) \cup \left( {4; + \infty } \right).\)
Cho a là số thực dương khác 5. Tính \(I = {\log _{\frac{a}{5}}}\left( {\frac{{{a^3}}}{{125}}} \right)\)
Ta có \(I = {\log _{\frac{a}{5}}}\left( {\frac{{{a^3}}}{{125}}} \right) = {\log _{\frac{a}{5}}}{\left( {\frac{a}{5}} \right)^3} = 3{\log _{\frac{a}{5}}}\left( {\frac{a}{5}} \right) = 3.\)
Cho a > 0, b > 0, giá trị của biểu thức \(T = 2{\left( {a + b} \right)^{ - 1}}.{\left( {ab} \right)^{\frac{1}{2}}}.{\left[ {1 + \frac{1}{4}\left( {\sqrt {\frac{a}{b}} - \sqrt {\frac{b}{a}} } \right){}^2} \right]^{\frac{1}{2}}}\) bằng
Ta có: \(T = 2{\left( {a + b} \right)^{ - 1}}.{\left( {ab} \right)^{\frac{1}{2}}}{\left[ {1 + \frac{1}{4}{{\left( {\sqrt {\frac{a}{b}} - \sqrt {\frac{b}{a}} } \right)}^2}} \right]^{\frac{1}{2}}}\)
\( = \frac{2}{{a + b}}.\sqrt {ab} {\left[ {1 + \frac{1}{4}.{{\left( {\frac{{a - b}}{{\sqrt {ab} }}} \right)}^2}} \right]^{\frac{1}{2}}} = \frac{{2\sqrt {ab} }}{{a + b}}.\sqrt {1 + \frac{{{{\left( {a - b} \right)}^2}}}{{4ab}}} = \frac{{2\sqrt {ab} }}{{a + b}}.\sqrt {\frac{{\left( {a + b} \right){}^2}}{{4ab}}} = 1\)
Cho a, b, c dương và khác 1. Các hàm số \(y = {\log _a}x,y = {\log _b}x,y = {\log _c}x\) có đồ thị như hình vẽ. Khẳng định nào dưới đây đúng?
Kẻ đường thẳng y = m > 0 như hình vẽ ta có:
\({\log _a}x{}_1 = m \Leftrightarrow x{}_1 = {a^m},{\log _b}{x_2} = m \Leftrightarrow {x_2} = {b^m},{\log _c}{x_3} = m \Leftrightarrow {x_3} = {c^m}\)
Quan sát hình vẽ ta thấy \({x_2} < {x_3} < {x_1} \Leftrightarrow {b^m} < {c^m} < {a^m}.\)
Mà m > 0 nên b < c < a hay a > c > b.
Tập xác định của hàm số \(y = 2\sin x\) là
Hàm số \(y = 2\sin x\) xác định trên R nên tập xác định D = R.
Cho \(a>0, b>0\) thỏa mãn \(a{}^2 + 4{b^2} = 5ab.\) Khẳng định nào sau đây đúng?
Ta có: \({a^2} + 4{b^2} = 5ab \Leftrightarrow {a^2} + 4ab + 4{b^2} = 9ab \Leftrightarrow {\left( {a + 2b} \right)^2} = 9ab.\)
Logarit cơ số 10 hai vế ta được:
\(\begin{array}{l}
\log {\left( {a + 2b} \right)^2} = \log (9ab) \Leftrightarrow 2\log \left( {a + 2b} \right) = \log 9 + loga + logb\\
\Leftrightarrow 2\log \left( {a + 2b} \right) = 2\log 3 + \log a + \log b \Leftrightarrow 2(\log \left( {a + 2b} \right) - \log 3) = \log a + \log b\\
\Leftrightarrow \log \frac{{a + 2b}}{3} = \frac{{\log a + \log b}}{2}.
\end{array}\)
Cho tập A có 26 phần tử. Hỏi A có bao nhiêu tập con gồm 6 phần tử?
Số tập con gồm 6 phần tử trong tập A gồm 26 phần tử là \(C_{26}^6\)
Gieo một con súc sắc cân đối và đồng chất, xác suất để mặt có số chấm chẵn xuất hiện là
Số phần tử không gian mẫu \(n(\Omega ) = 6.\)
Gọi biến cố A: “mặt chẵn chấm xuất hiện”
Ta có: \(A = \left\{ {2;4;6} \right\} \Rightarrow n(A) = 3.\)
Vậy xác suất \(P(A) = \frac{3}{6} = \frac{1}{2}.\)
Tập nghiệm của bất phương trình \({\log _{\frac{1}{3}}}\left( {x - 1} \right) + {\log _3}\left( {11 - 2x} \right) \ge 0\) là
Điều kiện: \(\left\{ \begin{array}{l}
x - 1 > 0\\
11 - 2x > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x > 1\\
x < \frac{{11}}{2}
\end{array} \right. \Leftrightarrow 1 < x < \frac{{11}}{2}\)
Ta có:
\(\begin{array}{l}
{\log _{\frac{1}{3}}}\left( {x - 1} \right) + {\log _3}(11 - 2x) \ge 0 \Leftrightarrow - {\log _3}(x - 1) + {\log _3}(11 - 2x) \ge 0\\
\to {\log _3}\frac{{11 - 2x}}{{x - 1}} \ge 0 \Leftrightarrow \frac{{11 - 2x}}{{x - 1}} \ge 1 \Leftrightarrow \frac{{11 - 2x}}{{x - 1}} - 1 \ge 0 \Leftrightarrow \frac{{12 - 3x}}{{x - 1}} \ge 0\\
\Leftrightarrow 12 - 3x \ge 0 \Leftrightarrow x \le 4\left( {do\,\,x - 1 > 0} \right)
\end{array}\)
Kết hợp với điều kiện \(1 < x < \frac{{11}}{2}\) ta được \(1 < x \le 4\) hay tập nghiệm của bất phương trình là \(S = \left( {1;4} \right]\)
Cho hàm số \(f(x)\) liên tục trên R và có đồ thị như hình vẽ. Mệnh đề nào sau đây SAI?
Đáp án A: đúng.
Đáp án B: Với m > 2 hoặc m < - 2 thì đường thẳng y = m cắt đồ thị hàm số tại một điểm duy nhất nên B
đúng.
Đáp án C: Hàm số đạt cực tiểu tại x = - 1 chứ không phải đạt cực tiểu bằng - 1 nên C sai.
Đáp án D: Giá trị lớn nhất của hàm số trên [-2;2] đạt được bằng 2 tại x = - 2 nên D đúng.
Cho hàm số \(f\left( x \right) = 2x + {e^x}.\) Tìm một nguyên hàm \(F(x)\) của hàm số \(f(x)\) thỏa mãn \(F\left( 0 \right) = 2019\)
Ta có: \(F\left( x \right) = \int {\left( {2x + {e^x}} \right)dx} = {x^2} + {e^x} + C.\)
Do \(F\left( 0 \right) = 2019\) nên \(0{}^2 + {e^0} + C = 2019 \Leftrightarrow C = 2018.\)
Vậy \(F\left( x \right) = {x^2} + {e^x} + 2018.\)
Tập tất cả giá trị của tham số m để hàm số \(y = {x^3} - 3m{x^2} + 3x + 1\) đồng biến trên R là
Hàm số đã cho là hàm số bậc ba có a = 1 > 0, có: \(y' = 3{x^2} - 6mx + 3.\)
Do đó nó đồng biến trên R nếu và chỉ nếu phương trình y’ = 0 vô nghiệm hoặc có nghiệm kép
\( \Leftrightarrow \Delta ' = 9{m^2} - 9 \le 0 \Leftrightarrow - 1 \le m \le 1.\)
Vậy \(m \in [ - 1;1].\)
Cho a, b là các số dương thỏa mãn \({\log _9}a = {\log _{16}}b = {\log _{12}}\frac{{5b - a}}{2}.\) Tính giá trị \(\frac{a}{b}.\)
Đặt \({\log _9}a = {\log _{16}}b = {\log _{12}}\frac{{5b - a}}{2} = t,\) ta được: \(a = {9^t},b = {16^t},\frac{{5b - a}}{2} = {12^t}\)
Suy ra \(\frac{{{{5.16}^t} - {9^t}}}{2} = {12^t} \Leftrightarrow {5.16^t} - {2.12^t} - {9^t} = 0 \Leftrightarrow 5 - 2.{\left( {\frac{3}{4}} \right)^t} - {\left( {\frac{3}{4}} \right)^{2t}} = 0 \Leftrightarrow {\left( {\frac{3}{4}} \right)^t} = \sqrt 6 - 1.\)
Do đó \(\frac{a}{b} = \frac{{{9^t}}}{{16{}^t}} = {\left( {\frac{3}{4}} \right)^{2t}} = {\left( {\sqrt 6 - 1} \right)^2} = 7 - 2\sqrt 6 .\)
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và \(ABC=60^0\) Hình chiếu vuông góc của điểm S lên mặt phẳng (ABCD) trùng với trọng tâm tam giác ABC. Gọi \(\varphi \) là goc giữa đường thẳng SB và mặt phẳng (SCD), tính \(\sin \varphi \) biết rằng SB = a.
Gọi M là trung điểm của SD, nhận xét góc giữa SB và (SCD) cũng bằng góc giữa OM và (SCD) (Vì OM//SB).
Gọi H là hình chiếu của O trên (SCD)
\( \Rightarrow \left( {OM,(SCD)} \right) = (OM,MH) = OMH.\)
Trong (SBD) kẻ OE//SH, khi đó tứ diện OECD là tứ diện vuông nên \(\frac{1}{{O{H^2}}} = \frac{1}{{O{C^2}}} + \frac{1}{{O{D^2}}} + \frac{1}{{O{E^2}}}.\)
Ta dễ dàng tính được \(OC = \frac{a}{2},OD = \frac{{a\sqrt 3 }}{2}.\)
Lại có: \(\frac{{OE}}{{SH}} = \frac{{OD}}{{HD}} = \frac{3}{4} \Rightarrow OE = \frac{3}{4}SH,\) mà \(SH = \sqrt {S{B^2} - B{H^2}} = \sqrt {{a^2} - {{\left( {\frac{{a\sqrt 3 }}{3}} \right)}^2}} = \frac{{a\sqrt 6 }}{3}\)
Do đó \(OE = \frac{3}{4}SH = \frac{3}{4}.\frac{{a\sqrt 6 }}{3} = \frac{{a\sqrt 6 }}{4}.\)
Suy ra \(\frac{1}{{O{H^2}}} = \frac{1}{{{{\left( {a/2} \right)}^2}}} + \frac{1}{{{{\left( {a\sqrt 3 /2} \right)}^2}}} + \frac{1}{{{{\left( {a\sqrt 6 /4} \right)}^2}}} = \frac{8}{{{a^2}}} \Rightarrow OH = \frac{{a\sqrt 2 }}{4}.\)
Tam giác OMH vuông tại H có \(OM = \frac{1}{2}SB = \frac{a}{2},OH = \frac{{a\sqrt 2 }}{4} \Rightarrow {\mathop{\rm sinOMH}\nolimits} = \frac{{OH}}{{OM}} = \frac{{\sqrt 2 }}{2}.\)
Vậy \(\sin \varphi = \frac{{\sqrt 2 }}{2}.\)
Cho hàm số \(y=f(x)\) liên tục trên R và có đạo hàm \(f'\left( x \right) = {x^2}\left( {x - 2} \right)\left( {{x^2} - 6x + m} \right)\) với mọi \(x \in R.\) Có bao nhiêu số nguyên m thuộc đoạn [-2019;2019] để hàm số \(g\left( x \right) = f\left( {1 - x} \right)\) nghịch biến trên khoảng \(\left( { - \infty ; - 1} \right)?\)
Ta có: \(g'(x) = - f'\left( {1 - x} \right) = - {\left( {1 - x} \right)^2}\left( {1 - x - 2} \right)\left[ {{{\left( {1 - x} \right)}^2} - 6\left( {1 - x} \right) + m} \right]\)
\( = - {\left( {1 - x} \right)^2}\left( { - 1 - x} \right)\left( {{x^2} + 4x + m - 5} \right) = {\left( {x - 1} \right)^2}\left( {x + 1} \right)\left( {{x^2} + 4x + m - 5} \right)\)
Hàm số g(x) nghịch biến trên \(\left( { - \infty ; - 1} \right)\)
\(\begin{array}{l}
\Leftrightarrow g'\left( x \right) \le 0,\forall x \in \left( { - \infty ; - 1} \right) \Leftrightarrow \left( {x + 1} \right)\left( {{x^2} + 4x + m - 5} \right) \le 0,\forall x \in \left( { - \infty ; - 1} \right)\\
\Leftrightarrow {x^2} + 4x + m - 5 \ge 0,\forall x \in \left( { - \infty ; - 1} \right)\left( {do\,\,x + 1 < 0,\forall x \in \left( { - \infty ; - 1} \right)} \right)\\
\Leftrightarrow h\left( x \right) = {x^2} + 4x - 5 \ge m\forall x \in \left( { - \infty ; - 1} \right) \Leftrightarrow - m \le \mathop {\min }\limits_{\left( { - \infty ; - 1} \right]} h\left( x \right).
\end{array}\)
Ta có \(h'\left( x \right) = 2x + 4 = 0 \Leftrightarrow x = - 2.\)
BBT:
Dựa vào BBT ta có \( - m \le - 9 \Leftrightarrow m \ge 9.\)
Mà \(m \in \left[ { - 2019;2019} \right]\) và m nguyên nên \(m \in \left[ {9;10;11;...;2019} \right]\) hay có 2019 – 9 + 1 = 2011 giá trị của m thỏa mãn.
Cho hình chóp S.ABC có \(AB = AC = 4,BC = 2,SA = 4\sqrt 3 ,SAB = SAC = {30^0}.\) Tính thể tích khối chóp S.ABC
Dễ thấy \(\Delta SAB = \Delta SAC(c.g.c)\) hay tam giác \(\Delta SBC\) cân.
Gọi M là trung điểm BC ta có: \(AM \bot BC,SM \bot BC \Rightarrow BC \bot (SAM).\)
Gọi H là hình chiếu của S trên AM thì \(SH \bot AM,SH \bot BC\) nên SH là đường cao của hình chóp.
Xét tam giác SAB có:
\(S{B^2} = S{A^2} + A{B^2} - 2.SA.AB.cos{30^0} = 16 \Rightarrow SB = 4 \Rightarrow SC = 4.\)
Do đó \(S{M^2} = \frac{{S{B^2} + S{C^2}}}{2} - \frac{{B{C^2}}}{4} = 15 \Rightarrow SM = \sqrt {15} \)
Tam giác ABC có \(A{M^2} = \frac{{A{B^2} + A{C^2}}}{2} - \frac{{B{C^2}}}{4} = 15 \Rightarrow AM = \sqrt {15} .\)
Khi đó \({S_{SAM}} = \sqrt {p(p - a)(p - b)(p - c)} = 6.\)
Do đó: \(SH = \frac{{2{S_{SAM}}}}{{AM}} = \frac{{2.6}}{{\sqrt {15} }} = \frac{{4\sqrt {15} }}{5}.\)
\({V_{S.ABC}} = \frac{1}{2}{S_{ABC}}.SH = \frac{1}{3}.\frac{1}{2}AM.BC.SH = \frac{1}{6}.\sqrt {15} .2.\frac{{4\sqrt {15} }}{5} = 4.\)
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau
Giá trị lớn nhất của m để phương trình \({e^{2{f^3}\left( x \right) - \frac{{13}}{2}{f^2}\left( x \right) + 7f\left( x \right) + \frac{3}{2}}} = m\) có nghiệm trên đoạn [0;2] là
Ta có: \({e^{2{f^3}\left( x \right) - \frac{{13}}{2}{f^2}\left( x \right) + 7f\left( x \right) + \frac{3}{2}}} = m \Leftrightarrow 2{f^3}\left( x \right) - \frac{{13}}{2}{f^2}\left( x \right) + 7f\left( x \right) + \frac{3}{2} = \ln m\)
Xét \(g\left( x \right) = 2{f^3}\left( x \right) - \frac{{13}}{2}{f^2}\left( x \right) + 7f\left( x \right) + \frac{3}{2}\) có
\(g'\left( x \right) = 6{f^2}\left( x \right).f'\left( x \right) - 13f\left( x \right).f'\left( x \right) + 7f'\left( x \right) = f'\left( x \right)\left[ {6{f^2}\left( x \right) - 13f\left( x \right) + 7} \right]\)
Suy ra \(g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}
f'\left( x \right) = 0\\
6{f^2}\left( x \right) - 13f\left( x \right) + 7 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
f'\left( x \right) = 0\\
f\left( x \right) = 1\\
f\left( x \right) = \frac{7}{6}
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = 1;x = 3\\
x = 1;x = {x_1} > 3\\
x = {x_2} < 1
\end{array} \right.\)
Xét g(x) trên đoạn [0;2].
+ Trong khoảng (0;1) thì \(f'\left( x \right) < 0,f\left( x \right) > 1,f\left( x \right) < \frac{7}{6}\) nên \(f'\left( x \right)\left( {f\left( x \right) - 1} \right)\left( {f\left( x \right) - \frac{7}{6}} \right) > 0\) hay g'(x) > 0
+ Trong khoảng (1;2) thì \(f'\left( x \right) > 0,f\left( x \right) > 1,f\left( x \right) < \frac{7}{6}\) nên \(f'\left( x \right)\left( {f\left( x \right) - 1} \right)\left( {f\left( x \right) - \frac{7}{6}} \right) < 0\) hay g'(x) < 0
Từ đó ta có bảng biến thiên của g(x) như sau:
Từ bảng biến thiên ta thấy \(\mathop {\max }\limits_{[0;2]} g\left( x \right) = 4.\)
Vậy yêu cầu bài toán thỏa nếu và chỉ nếu \(\ln m \le 4 \Leftrightarrow m \le {e^4}\) hay giá trị lớn nhất của m là m = e4
Cho phương trình \(\left( {2\sin x - 1} \right)\left( {\sqrt 3 {\mathop{\rm tanx}\nolimits} + 2sinx} \right) = 3 - 4{\cos ^2}x.\) Tổng tất cả các nghiệm thuộc đoạn \(\left[ {0;20\pi } \right]\) của phương trình bằng
\(2\sin x - 1\sqrt 3 {\mathop{\rm tanx}\nolimits} + 2sinx = 3 - 4{\cos ^2}x\) (*)
Điều kiện: \(\cos x \ne 0 \Leftrightarrow x \ne \frac{\pi }{2} + k\pi .\)
\(\begin{array}{l}
\left( * \right) \Leftrightarrow \left( {2\sin x - 1} \right).\frac{{\sqrt 3 \sin + 2\sin x\cos x}}{{\cos x}} = 3 - 4{\cos ^2}x\\
\Leftrightarrow \left( {2\sin x - 1} \right)\left( {\sqrt 3 {\mathop{\rm sinx}\nolimits} + sin2x} \right) + \left( {4{{\cos }^3}x - 3\cos x} \right) = 0\\
\Leftrightarrow 2\sqrt 3 {\sin ^2}x - \sqrt 3 {\mathop{\rm sinx}\nolimits} + 2sinsin2x - sin2x + cos3x = 0\\
\Leftrightarrow 2\sqrt 3 {\sin ^2}x - \sqrt 3 {\mathop{\rm sinx}\nolimits} + cosx - cos3x - sin2x + cos3x = 0\\
\Leftrightarrow \sqrt 3 {\mathop{\rm sinx}\nolimits} \left( {2\sin x - 1} \right) - \sin 2x + \cos x = 0\\
\Leftrightarrow \sqrt 3 {\mathop{\rm sinx}\nolimits} \left( {2\sin x - 1} \right) - \cos x\left( {2\sin x - 1} \right) = 0\\
\Leftrightarrow \left( {2\sin x - 1} \right)\left( {\sqrt 3 {\mathop{\rm sinx}\nolimits} - cosx} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
2\sin x - 1 = 0\,\,(1)\\
\sqrt 3 {\mathop{\rm sinx}\nolimits} - cosx = 0\,\,(2)
\end{array} \right.
\end{array}\)
Giải \((1) \Leftrightarrow {\mathop{\rm sinx}\nolimits} = \frac{1}{2} \Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{6} + k2\pi \\
x = \frac{{5\pi }}{6} + k2\pi
\end{array} \right.\)
Giải \(\left( 2 \right) \Leftrightarrow \sqrt 3 {\mathop{\rm sinx}\nolimits} = cosx \Leftrightarrow \sqrt 3 {\mathop{\rm tanx}\nolimits} = 1 \Leftrightarrow tanx = \frac{1}{{\sqrt 3 }} \Leftrightarrow x = \frac{\pi }{6} + k\pi \left( {TM} \right).\)
Hợp nghiệm của (1) và (2) ta được \(\left[ \begin{array}{l}
x = \frac{\pi }{6} + k\pi \\
x = \frac{{5\pi }}{6} + k2\pi
\end{array} \right.\left( {k \in Z} \right).\)
Mà \(x \in \left[ {0;20\pi } \right] \Rightarrow x \in \left\{ {\frac{\pi }{6};\frac{\pi }{6} + \pi ;...;\frac{\pi }{6} + 19\pi ;\frac{{5\pi }}{6};\frac{{5\pi }}{6} + 2\pi ;...\frac{{5\pi }}{6} + 18\pi } \right\}\)
Vậy tổng các nghiệm là:
\(\begin{array}{l}
\frac{\pi }{6} + \frac{\pi }{6} + \pi + \frac{\pi }{6} + 2\pi + ... + \frac{\pi }{6} + 19\pi + \frac{{5\pi }}{6} + \frac{{5\pi }}{6} + 2\pi + ... + \frac{{5\pi }}{6} + 18\pi \\
= 20.\frac{\pi }{6} + \left( {1 + 2 + 3 + ... + 19} \right)\pi + \frac{{5\pi }}{6}.10 + 2\pi \left( {1 + 2 + ... + 9} \right) = \frac{{875\pi }}{3}
\end{array}\)
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại A, \(AB = a\sqrt 3 ,\) BC = 2a, đường thẳng AC' tạo với mặt phẳng BCC'B' một góc \(30^0\) Diện tích của mặt cầu ngoại tiếp hình lăng trụ đã cho bằng
Trong mặt phẳng (ABC) kẻ \(AH \bot BC\left( {H \in BC} \right).\)
Lại có \(AH \bot BB'\) (do \(BB \bot (ABC)\) suy ra \(AH \bot \left( {BCC'B'} \right).\)
Suy ra \(\left( {AC',\left( {BCC'B'} \right)} \right) = AC'H = {30^0}\)
Ta có: \(AC = \sqrt {B{C^2} - A{B^2}} = a,AH = \frac{{AB.AC}}{{BC}} = \frac{{a\sqrt 3 }}{2}.\)
\(AC' = \frac{{AH}}{{\sin AC'H}} = a\sqrt 3 \Rightarrow CC' = \sqrt {AC{'^2} - A{C^2}} = a\sqrt 2 .\)
Gọi R là bán kính mặt cầu ngoại tiếp lăng trụ, khi đó \(R = \sqrt {{r^2} + \frac{{{h^2}}}{4}} \) với \(r = \frac{{BC}}{2} = a\) là bán kính đường tròn ngoại tiếp tam giác vuông ABC và \(h = CC' = a\sqrt 2 \)
Do đó \(R = \sqrt {{a^2} + \frac{{{a^2}}}{2}} = \frac{{a\sqrt 6 }}{2} \Rightarrow S = 4\pi {R^2} = 4\pi .\frac{{6a{}^2}}{4} = 6\pi {a^2}.\)
Cho hàm số \(f(x)\) liên tục trên R thỏa mãn điều kiện: \(f\left( 0 \right) = 2\sqrt 3 ,f\left( x \right) > 0,\forall x \in R\) và \(f\left( x \right).f'\left( x \right) = \left( {2x + 1} \right)\sqrt {1 + {f^2}\left( x \right)} ,\forall x \in R.\) Khi đó giá trị \(f(1)\) bằng
Ta có: \(f\left( x \right).f'\left( x \right) = 2x + 1\sqrt {1 + {f^2}\left( x \right)} \)
\( \Rightarrow \frac{{f\left( x \right).f'\left( x \right)}}{{\sqrt {1 + {f^2}\left( x \right)} }} = 2x + 1 \Rightarrow \int {\frac{{f\left( x \right).f'\left( x \right)}}{{\sqrt {1 + {f^2}\left( x \right)} }}dx} = \int {\left( {2x + 1} \right)dx} \)
Tính \(\int {\frac{{f\left( x \right).f'\left( x \right)}}{{\sqrt {1 + {f^2}\left( x \right)} }}dx} \) ta đặt $\sqrt {1 + {f^2}\left( x \right)} = t \Rightarrow 1 + {f^2}\left( x \right) = {t^2} \Leftrightarrow 2f\left( x \right)f'\left( x \right)dx = 2tdt\)
\( \Rightarrow f\left( x \right)f'\left( x \right)dx = tdt\)
Thay vào ta được \(\int {\frac{{f\left( x \right).f'\left( x \right)}}{{\sqrt {1 + {f^2}\left( x \right)} }}dx} = \int {\frac{{tdt}}{t}} = \int {dt} = t + C = \sqrt {1 + {f^2}\left( x \right)} + C\)
Do đó \(\sqrt {1 + {f^2}\left( x \right)} + C = {x^2} + x.\)
\(f\left( 0 \right) = 2\sqrt 2 \Rightarrow \sqrt {1 + {{\left( {2\sqrt 2 } \right)}^2}} + C = 0 \Leftrightarrow C = - 3.\)
Từ đó:
\(\sqrt {1 + {f^2}\left( x \right)} - 3 = {x^2} + x \Rightarrow \sqrt {1 + {f^2}\left( x \right)} - 3 = 1 + 1 \Leftrightarrow \sqrt {1 + {f^2}\left( x \right)} = 5\)
\( \Leftrightarrow 1 + {f^2}(1) = 25 \Leftrightarrow {f^2}(1) = 24 \Leftrightarrow f\left( 1 \right) = \sqrt {24} \)
Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD); tứ giác ABCD là hình thang vuông với cạnh đáy AD, BC; \(AD = 3BC = 3a;AB = a,SA = a\sqrt 3 .\) Điểm I thỏa mãn \(\overrightarrow {AD} = 3\overrightarrow {AI} ;\) M là trung điểm SD, H là giao điểm của AM và SI . Gọi E , F lần lượt là hình chiếu của A lên SB, SC. Tính thể tích V của khối nón có đáy là đường tròn ngoại tiếp tam giác EFH và đỉnh thuộc mặt phẳng (ABCD).
Xét tam giác SAD vuông tại A có \(SA = a\sqrt 3 ,AD = 3a \Rightarrow SDA = {30^0} \Rightarrow MAI = {30^0}.\)
Lại có tam giác SAI vuông tại A có \(SA = a\sqrt 3 ,AI = a \Rightarrow SIA = {60^0}\) nên tam giác AHI có \(H=90^0\) hay \(AH \bot SI.\)
Mà \(AH \bot IC\) do \(IC//BA \bot (SAD)\) nên \(AH \bot (SIC) \Rightarrow AH \bot SC.\)
Ngoài ra, \(AE \bot SB,AE \bot BC\left( {BC \bot (SAB)} \right) \Rightarrow AE \bot (SBC) \Rightarrow AE \bot SC.\)
Mà \(AE \bot SC\) nên \(SC \bot (AEFH)\) và AEFH là tứ giác có \(E = H = {90^0}\) nên nội tiếp đường tròn tâm K là trung điểm AF đường kính AF .
Gọi O là trung điểm AC thì OK // SC mà \(SC \bot (AEFH)\) nên \(OK \bot (AEFH)\) hay O chính là đỉnh hình nón và đường tròn đáy là đường tròn đường kính AF .
Ta tính AF, OK.
Xét tam giác SAC vuông tại A đường cao AF nên \(AF = \frac{{SA.AC}}{{SC}} = \frac{{SA.AC}}{{\sqrt {S{A^2} + A{C^2}} }} = \frac{{a\sqrt 6 }}{{\sqrt 5 }}; OK = \frac{1}{2}CF = \frac{1}{2}.\frac{{C{A^2}}}{{CS}} = \frac{a}{{\sqrt 5 }}.\)
Vậy thể tích \(V = \frac{1}{2}\pi {r^2}h = \frac{1}{3}\pi .\frac{a}{{\sqrt 5 }}.{\left( {\frac{1}{2}.\frac{{a\sqrt 6 }}{{\sqrt 5 }}} \right)^2} = \frac{{\pi {a^3}}}{{10\sqrt 5 }}.\)
Cho phương trình \(m{\ln ^2}\left( {x + 1} \right) - \left( {x + 2 - m} \right)\ln \left( {x + 1} \right) - x - 2 = 0\,\,(1).\) Tập tất cả giá trị của tham số m để phương trình 1 có các nghiệm, trong đó có hai nghiệm phân biệt thỏa mãn \(0 < {x_1} < 2 < 4 < {x_2}\) là khoảng \(\left( {a; + \infty } \right).\) Khi đó, \(a\) thuộc khoảng
\(m{\ln ^2}x + 1 - x + 1 - m\ln x + 1 - x - 1 = 0\)
Điều kiện: x > -1.
Ta có:
\(\begin{array}{l}
m{\ln ^2}\left( {x + 1} \right) - \left( {x + 2 - m} \right)\ln \left( {x + 1} \right) - x - 2 = 0\\
\Leftrightarrow m{\ln ^2}\left( {x + 1} \right) - \left( {x + 2} \right)\ln \left( {x + 1} \right) + m\ln \left( {x + 1} \right) - \left( {x + 2} \right) = 0\\
\Leftrightarrow m\ln \left( {x + 1} \right)\left[ {\ln \left( {x + 1} \right) + 1} \right] - \left( {x + 2} \right)\left[ {\ln \left( {x + 1} \right) + 1} \right] = 0\\
\Leftrightarrow \left[ {\ln \left( {x + 1} \right) + 1} \right]\left[ {m\ln \left( {x + 1} \right) - x - 2} \right] = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\ln \left( {x + 1} \right) + 1 = 0\\
m\ln \left( {x + 1} \right) - x - 2 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x + 1 = {e^{ - 1}}\\
m\ln \left( {x + 1} \right) - x - 2 = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = {e^{ - 1}} - 1 < 0(L)\\
m\ln \left( {x + 1} \right) - x - 2 = 0(*)
\end{array} \right.
\end{array}\)
Với m = 0 thì phương trình (*) có nghiệm \(x = - 2 < - 1(L)\) nên không thỏa bài toán.
Với \(m \ne 0\) thì (*) \( \Leftrightarrow \frac{{\ln (x + 1)}}{{x + 2}} = \frac{1}{m}.\)
Xét \(f\left( x \right) = \frac{{\ln \left( {1 + x} \right)}}{{x + 2}}\) có \(f'\left( x \right) = \frac{{\frac{{x + 2}}{{x + 1}} - \ln \left( {x + 1} \right)}}{{{{\left( {x + 2} \right)}^2}}} = 0 \Leftrightarrow x = {x_0} \in (2;3)\) và \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{\ln (1 + x)}}{{x + 2}} = 0\) nên ta có bảng biến thiên trên \(\left( { - 1; + \infty } \right)\) như sau:
Để phương trình có nghiệm \(x_1, x_2\) thỏa \(0 < {x_1} < 2 < 4 < {x_2}\) thì \(0 < \frac{1}{m} < \frac{{\ln 5}}{6} \Leftrightarrow m > \frac{6}{{\ln 5}} \approx 3,728\)
Suy ra \(a = \frac{6}{{\ln 5}} \in \left( {3,7;3,8} \right).\)
Cho hàm số \(y = {x^4} - 2{x^2} + m - 2\) có đồ thị C. Gọi S là tập các giá trị của m sao cho đồ thị C có đúng một tiếp tuyến song song với trục Ox. Tổng tất cả các phần tử của S là
Ta có \(y' = 4{x^3} - 4x = 0 \Leftrightarrow 4x\left( {{x^2} - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x = 1\\
x = - 1
\end{array} \right.\)
Lại có \(y'' = 12{x^2} - 4 \Rightarrow y''\left( 0 \right) = - 4 < 0;y''\left( 1 \right) = y''\left( { - 1} \right) = 8 > 0\) nên x = 0 là điểm cực đại của hàm số và x = 1, x = - 1 là các điểm cực tiểu của hàm số.
Nhận thấy rằng đây là hàm trùng phương nên hai điểm cực tiểu sẽ đối xứng nhau qua Oy.
Từ đó để tiếp tuyến của đồ thị song song với trục Ox thì tiếp điểm là điểm cực trị của đồ thị hàm số.
Do đó để có đúng 1 tiếp tuyến song song với trục Ox thì điểm cực đại hoặc cực tiểu phải nằm trên trục Ox.
Hay
\(\left[ \begin{array}{l}
y\left( 0 \right) = 0\\
y\left( { \pm 1} \right) = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
m - 2 = 0\\
m - 3 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
m = 2\\
m = 3
\end{array} \right.\)
Vậy \(S = \left\{ {2;3} \right\} \Rightarrow \) tổng các phần tử của S là 2 + 3 = 5.
Cho hai số thực x, y thỏa mãn \({x^2} + {y^2} - 4x + 6y + 4 + \sqrt {{y^2} + 6y + 10} = \sqrt {6 + 4x - {x^2}} .\) Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức \(T = \left| {\sqrt {{x^2} + {y^2}} - a} \right|.\) Có bao nhiêu giá trị nguyên thuộc đoạn [-10;10] của tham số a để \(M \ge 2m?\)
Ta có \({x^2} + {y^2} - 4x + 6y + 4 + \sqrt {{y^2} + 6y + 10} = \sqrt {6 + 4x - {x^2}} \)
\(\begin{array}{*{20}{l}}
{ \Leftrightarrow {x^2} + {y^2} - 4x + 6y + 4 + \sqrt {{y^2} + 6y + 10} - \sqrt {6 + 4x - {x^2}} = 0}\\
{ \Leftrightarrow {x^2} + {y^2} - 4x + 6y + 4 + \frac{{\left( {\sqrt {{y^2} + 6y + 10} - \sqrt {6 + 4x - {x^2}} } \right)\left( {\sqrt {{y^2} + 6y + 10} + \sqrt {6 + 4x - {x^2}} } \right)}}{{\sqrt {{y^2} + 6y + 10} + \sqrt {6 + 4x - {x^2}} }} = 0}\\
{ \Leftrightarrow {x^2} + {y^2} - 4x + 6y + 4 + \frac{{{y^2} + 6y + 10 - 6 - 4x + {x^2}}}{{\sqrt {{y^2} + 6y + 10} + \sqrt {6 + 4x - {x^2}} }} = 0}\\
{ \Leftrightarrow {x^2} + {y^2} - 4x + 6y + 4 + \frac{{{x^2} + {y^2} - 4x + 6y + 4}}{{\sqrt {{y^2} + 6y + 10} + \sqrt {6 + 4x - {x^2}} }} = 0}\\
{ \Leftrightarrow \left( {{x^2} + {y^2} - 4x + 6y + 4} \right)\left( {1 + \frac{1}{{\sqrt {{y^2} + 6y + 10} + \sqrt {6 + 4x - {x^2}} }}} \right) = 0}\\
{ \Leftrightarrow {x^2} + {y^2} - 4x + 6y + 4 = 0\left( {do{\mkern 1mu} {\mkern 1mu} \Leftrightarrow {{\left( {x - 2} \right)}^2} + {{\left( {y + 3} \right)}^2} = 91 + \frac{1}{{\sqrt {{y^2} + 6y + 10} + \sqrt {6 + 4x - {x^2}} }} > 0)} \right)}
\end{array}\)
Phương trình \({\left( {x - 2} \right)^2} + {\left( {y + 3} \right)^2} = 9\) là phương trình đường tròn (C) tâm I(2;-3) và bán kính R = 3.
Gọi \(N\left( {x;y} \right) \in (C)\) ta suy ra \(ON = \sqrt {{x^2} + {y^2}} \) suy ra \(T = \left| {ON - a} \right|\)
Gọi A, B là giao điểm của đường tròn (C) và đường thẳng OI.
Khi đó \(OA = OI - R = \sqrt {13} - 3\) và \(OB = OI + R = \sqrt {13} + 3\)
Suy ra \(\sqrt {13} - 3 \le \sqrt {{x^2} + {y^2}} \le \sqrt {13} + 3\)
TH1: Nếu \(\sqrt {13} - 3 \le a \le \sqrt {13} + 3\) thì \(\left| {\sqrt {x{}^2 + {y^2}} - a} \right| \ge 0 \Rightarrow \min T = 0 \Rightarrow M \ge 2m \Rightarrow a \in \left\{ {1;2;3;4;5;6} \right\}\)
TH2: Nếu \(a < \sqrt {13} - 3 \Rightarrow a < \sqrt {13} \) nên \(\left| {\sqrt {13} + 3 - a} \right| > \left| {\sqrt {13} - 3 - a} \right|\) , do đó \(M = \left| {\sqrt {13} + 3 - a} \right|;m = \left| {\sqrt {13} - 3 - a} \right|\)
Vì \(M \ge 2m \Rightarrow \left| {\sqrt {13} + 3 - a} \right| \ge 2\left| {\sqrt {13} - 3 - a} \right|\)
\( \Leftrightarrow {\left( {\sqrt {13} + 3 - a} \right)^2} - {\left( {2\sqrt {13} - 6 - 2a} \right)^2} \ge 0 \Leftrightarrow \sqrt {13} - 9 \le a \le \sqrt {13} + 1 \Rightarrow a \in \left\{ { - 5; - 4; - 3; - 2; - 1;0} \right\}\)
TH3: Nếu \(a > \sqrt {13} + 3 \Rightarrow a > \sqrt {13} \) nên \(\left| {\sqrt {13} + 3 - a} \right| < \left| {\sqrt {13} - 3 - a} \right|,\) do đó \(m = \left| {\sqrt {13} + 3 - a} \right|;M = \left| {\sqrt {13} - 3 - a} \right|\)
Vì \(M \ge 2m \Rightarrow \left| {\sqrt {13} - 3 - a} \right| \ge 2\left| {\sqrt {13} + 3 - a} \right|\)
\( \Leftrightarrow {\left( {\sqrt {13} - 3 - a} \right)^2} - {\left( {2\sqrt {13} + 6 - 2a} \right)^2} \ge 0 \Leftrightarrow \sqrt {13} + 1 \le a \le \sqrt {13} + 9 \Rightarrow a \in \left\{ {7;8;9;10} \right\}\)
Vậy có 16 giá trị của a thỏa mãn đề bài.
Cho hình chóp S.ABC có ba cạnh OA, OB, OC đôi một vuông góc và OA = OB = OC = a. Gọi M là trung điểm cạnh AB . Góc hợp bởi hai véc tơ \(\overrightarrow {BC} \) và \(\overrightarrow {OM} \) bằng
Gắn hệ trục tọa độ Oxyz như hình vẽ với \(A \in Ox;B \in Oy;C \in Oz\) và \(OA = OB = OC = a.\)
Khi đó \(A\left( {a;0;0} \right),B\left( {0;a;0} \right),C\left( {0;0;a} \right) \Rightarrow M\left( {\frac{a}{2};\frac{a}{2};0} \right)\)
Ta có \(\overrightarrow {OM} = \left( {\frac{a}{2};\frac{a}{2};0} \right) \Rightarrow \left| {\overrightarrow {OM} } \right| = \sqrt {\frac{{{a^2}}}{4} + \frac{{{a^2}}}{4} + 0} = \frac{{a\sqrt 2 }}{2}\) và \(\overrightarrow {BC} = \left( {0; - a;a} \right) \Rightarrow \left| {\overrightarrow {BC} } \right| = \sqrt {a{}^2 + a{}^2} = a\sqrt 2 \)
Từ đó \(\cos \left( {\overrightarrow {BC} ;\overrightarrow {OM} } \right) = \frac{{\overrightarrow {BC} .\overrightarrow {OM} }}{{\left| {\overrightarrow {BC} } \right|.\left| {\overrightarrow {OM} } \right|}} = \frac{{\frac{a}{2}.0 + \frac{a}{2}.( - a) + 0.a}}{{a\sqrt 2 .\frac{{a\sqrt 2 }}{2}}} = \frac{{ - \frac{{{a^2}}}{2}}}{{{a^2}}} = - \frac{1}{2}.\)
Nên góc giữa hai véc tơ \(\overrightarrow {BC} ;\overrightarrow {OM} \) là \(120^0\)
Cho số nguyên dương n thỏa mãn điều kiện \(720\left( {C_7^7 + C_8^7 + ...C_n^7} \right) = \frac{1}{{4032}}A_{n + 1}^{10}.\) Hệ số của \(x^7\) trong khai triển \({\left( {x - \frac{1}{{{x^2}}}} \right)^n}\left( {x \ne 0} \right)\) bằng
+ Sử dụng công thức \(C_n^k + C_n^{k + 1} = C_{n + 1}^{k + 1}\), ta có
\(\begin{array}{l}
C_{n + 1}^8 = C_n^8 + C_n^7\\
C_n^8 = C_{n - 1}^7 + C_{n - 1}^8\\
C_{n - 1}^8 = C_{n - 2}^7 + C_{n - 2}^8\\
...\\
C_9^8 = C_8^8 + C_8^7\\
C_8^8 = C_8^8
\end{array}\)
Cộng vế với vế ta được \(C_{n + 1}^8 + C_n^8 + C_{n - 1}^8 + ... + C_9^8 + C_8^8 = C_n^8 + C_n^7 + C_{n - 1}^8 + C_{n - 1}^7 + ... + C_8^8 + C_8^7 + C_8^8\)
Thu gọn ta được \(C_8^8 + C_8^7 + ... + C_n^7 = C_{n + 1}^8\) mà \(C_8^8 = C_7^7 = 1\) nên $C_7^7 + C_8^7 + ... + C_n^7 = C_{n + 1}^8\)
Khi đó ta có \(720C_7^7 + C_8^7 + ...C_n^7 = \frac{1}{{4032}}A_{n + 1}^{10} \Leftrightarrow 720.C_{n + 1}^8 = \frac{1}{{4032}}A_{n + 1}^{10} \Rightarrow 720.\frac{{\left( {n + 1} \right)!}}{{8!\left( {n - 7} \right)!}} = \frac{1}{{4032}}\frac{{\left( {n + 1} \right)!}}{{\left( {n - 9} \right)!}}\)
\(\begin{array}{l}
\Leftrightarrow \frac{1}{{56}}\frac{{\left( {n + 1} \right)!}}{{\left( {n - 9} \right)!\left( {n - 8} \right)\left( {n - 7} \right)}} = \frac{1}{{4032}}.\frac{{\left( {n + 1} \right)!}}{{\left( {n - 9} \right)!}}\left( {n > 9} \right)\\
\Leftrightarrow \left( {n - 7} \right)\left( {n - 8} \right) = 72 \Leftrightarrow {n^2} - 15n + 56 = 72\\
\Leftrightarrow {n^2} - 15n - 16 = 0 \Leftrightarrow \left[ \begin{array}{l}
n = - 1(ktm)\\
n = 16(tm)
\end{array} \right.
\end{array}\)
Với n = 16 ta có \({\left( {x - \frac{1}{{{x^2}}}} \right)^{16}} = \sum\limits_{k = 0}^{16} {C_{16}^k.{x^{16 - k}}} {\left( { - \frac{1}{{{x^2}}}} \right)^k} = \sum\limits_{k = 0}^{16} {C_{16}^k.{x^{16 - k}}.{x^{ - 2k}}{{( - 1)}^k}} = \sum\limits_{k = 0}^{16} {C_{16}^k.{x^{16 - 3k}}{{( - 1)}^k}} \)
Số hạng chứa \(x^7\) ứng với \(16 - 3k = 7 \Rightarrow k = 3\)
Nên hệ số cần tìm là \(C_{16}^3.{( - 1)^3} = - 560.\)
Có bao nhiêu giá trị của tham số m để giá trị lớn nhất của hàm số \(y = \frac{{x - {m^2} - 2}}{{x - m}}\) trên đoạn [0;4] bằng - 1
ĐK: \(x \ne m\)
Ta có \(y' = \frac{{{m^2} - m + 2}}{{{{\left( {x - m} \right)}^2}}}\) nhận thấy \({m^2} - m + 2 = \left( {m - \frac{1}{2}} \right){}^2 + \frac{7}{4} > 0;\forall m\) nên \(y' > 0;\forall m\)
Hay hàm số đồng bến trên từng khoảng xác định.
Để hàm số đạt GTLN trên [0;4] thì \(m \in \left[ {0;4} \right] \Leftrightarrow \left[ \begin{array}{l}
m < 0\\
m > 4
\end{array} \right.\)
Suy ra \(\mathop {\max }\limits_{[0;4]} y = y(4) = \frac{{4 - {m^2} - 2}}{{4 - m}}.\) Theo bài ra ta có
\(\frac{{4 - m{}^2 - 2}}{{4 - m}} = - 1 \Rightarrow - {m^2} + 2 = m - 4 \Leftrightarrow {m^2} + m - 6 = 0 \Leftrightarrow \left[ \begin{array}{l}
m = 2(ktm)\\
m = - 3(tm)
\end{array} \right.\)
Vậy có một giá trị của m thỏa mãn.
Cho hàm số \(y = \frac{{x - 3}}{{{x^3} - 3m{x^2} + \left( {2{m^2} + 1} \right)x - m}}.\) Có bao nhiêu giá trị nguyên thuộc đoạn [-6;6] của tham số m để đồ thị hàm số có bốn đường tiệm cận?
Ta có \(y = \frac{{x - 3}}{{{x^3} - 3mx{}^2 + \left( {2{m^2} + 1} \right)x - m}}\)
\(\mathop {\lim }\limits_{x \to \pm \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{x - 3}}{{{x^3} - 3m{x^2} + \left( {2{m^2} + 1} \right)x - m}} = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{\frac{x}{{{x^3}}} - \frac{3}{{{x^3}}}}}{{1 - 3m\frac{{{x^2}}}{{{x^3}}} + \left( {2m{}^2 + 1} \right)\frac{x}{{x{}^3}} - \frac{m}{{{x^3}}}}} = 0\) nên y = 0 là tiệm ngang của đồ thị hàm số.
Vậy để đồ thị hàm số có 4 đường tiệm cận thì đồ thị hàm số phải có 3 đường tiệm cận đứng.
Hay phương trình \({x^3} - 3m{x^2} + \left( {2{m^2} + 1} \right)x - m = 0(1)\) có ba nghiệm phân biệt \(x \ne 3.\)
Ta có \({x^3} - 3m{x^2} + \left( {2{m^2} + 1} \right)x - m = 0 \Leftrightarrow \left( {x - m} \right)\left( {{x^2} - 2mx + 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}
x = m\\
{x^2} - 2mx + 1 = 0(*)
\end{array} \right.\)
Để phương trình (1) có ba nghiệm phân biệt khác 3 thì \(m \ne 3\) và phương trình (*) có hai nghiệm phân biệt khác m và khác 3.
Do đó \(\left\{ \begin{array}{l}
\Delta ' = {m^2} - 1 > 0\\
3{}^2 - 2.m.3 + 1 \ne 0\\
{m^2} - 2{m^2} + 1 \ne 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
\left[ \begin{array}{l}
m < - 1\\
m > 1
\end{array} \right.\\
m \ne \frac{5}{3}\\
m \ne - 1\\
m \ne 1
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
\left[ \begin{array}{l}
m < - 1\\
m > 1
\end{array} \right.\\
m \ne \frac{5}{3}
\end{array} \right.\)
Kết hợp điều kiện \(\left\{ \begin{array}{l}
m \ne 3\\
- 6 \le m \le 6
\end{array} \right. \Rightarrow m \in \left\{ { - 6; - 5; - 4; - 3; - 2;2;4;5;6} \right\}\)
Vậy có 9 giá trị của m thỏa mãn điều kiện
Tập nghiệm của bất phương trình \({\log _2}\left( {x\sqrt {{x^2} + 2} + 4 - {x^2}} \right) + 2x + \sqrt {{x^2} + 2} \le 1\) là \(\left( { - \sqrt a ; - \sqrt b } \right].\) Khi đó ab bằng
Điều kiện: \(x\sqrt {{x^2} + 2} + 4 - {x^2} > 0 \Leftrightarrow x\left( {\sqrt {{x^2} + 2} - x} \right) + 4 > 0 \Leftrightarrow x.\frac{2}{{\sqrt {{x^2} + 2} + x}} + 4 > 0\)
\(\begin{array}{*{20}{l}}
{ \Leftrightarrow \frac{{2x}}{{\sqrt {{x^2} + 2} + x}} + \frac{{4\left( {\sqrt {{x^2} + 2} + x} \right)}}{{\sqrt {{x^2} + 2} + x}} > 0 \Rightarrow 6x + 4\sqrt {{x^2} + 2} > 0\left( {do{\mkern 1mu} {\mkern 1mu} \sqrt {{x^2} + 2} > x;\forall x \Leftrightarrow 2\sqrt {{x^2} + 2} > - 3x \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{ - 3x < 0}\\
{\left\{ {\begin{array}{*{20}{l}}
{ - 3x \ge 0}\\
{4\left( {{x^2} + 2} \right) > {{\left( { - 3x} \right)}^2}}
\end{array}} \right.}
\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{x > 0}\\
{\left\{ {\begin{array}{*{20}{l}}
{x \le 0}\\
{5{x^2} < 8}
\end{array}} \right.}
\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{x > 0}\\
{ - \frac{{\sqrt {40} }}{5} < x \le 0}
\end{array}} \right.} \right)}
\end{array}\)
Khi đó ta có \({\log _2}\left( {x\sqrt {{x^2} + 2} + 4 - {x^2}} \right) + 2x + \sqrt {{x^2} + 2} \le 1\)
\(\begin{array}{l}
\Leftrightarrow {\log _2}\left( {x\left( {\sqrt {{x^2} + 2} - x} \right) + 4} \right) + 2x + \sqrt {{x^2} + 2} \le 1\\
\Leftrightarrow {\log _2}\left( {\frac{{2x}}{{\sqrt {{x^2} + 2} + x}} + 4} \right) + 2x + \sqrt {{x^2} + 2} \le 1\\
\Leftrightarrow {\log _2}\left( {\frac{{6x + 4\sqrt {{x^2} + 2} }}{{\sqrt {{x^2} + 2} + x}}} \right) + 2x + \sqrt {{x^2} + 2} \le 1\\
{\log _2}\left( {6 + 4\sqrt {{x^2} + 2} } \right) - {\log _2}\left( {\sqrt {{x^2} + 2} + x} \right) + 2x + \sqrt {{x^2} + 2} \le 1\\
\Leftrightarrow {\log _2}\left[ {2\left( {3x + 2\sqrt {{x^2} + 2} } \right)} \right] - {\log _2}\left( {\sqrt {{x^2} + 2} + x} \right) + 2x + \sqrt {{x^2} + 2} \le 1\\
\Leftrightarrow {\log _2}2 + {\log _2}\left( {3x + 2\sqrt {{x^2} + 2} } \right) - {\log _2}\left( {\sqrt {{x^2} + 2} + x} \right) + 2x + \sqrt {{x^2} + 2} \le 1\\
\Leftrightarrow 1 + {\log _2}\left( {3x + 2\sqrt {{x^2} + 2} } \right) - {\log _2}\left( {\sqrt {{x^2} + 2} + x} \right) + 2x + \sqrt {{x^2} + 2} \le 1\\
\Leftrightarrow {\log _2}\left( {3x + 2\sqrt {{x^2} + 2} } \right) + 3x + 2\sqrt {{x^2} + 2} \le {\log _2}\left( {\sqrt {{x^2} + 2} + x} \right) + x + \sqrt {{x^2} + 2}
\end{array}(*)\)
Xét hàm số \(f\left( t \right) = t + {\log _2}t\) với t > 0 ta có $f'\left( t \right) = 1 + \frac{1}{{t.\ln 2}} > 0;\forall t > 0\) nên \(f(t)\) là hàm đồng biến trên $\left( {0; + \infty } \right)\)
Từ đó
\(\begin{array}{l}
\left( * \right) \Leftrightarrow f\left( {3x + 2\sqrt {{x^2} + 2} } \right) \le f\left( {\sqrt {{x^2} + 2} + x} \right)\\
\Leftrightarrow 3x + 2\sqrt {{x^2} + 2} \le \sqrt {{x^2} + 2} + x\\
\Leftrightarrow \sqrt {{x^2} + 2} \le - 2x\\
\Leftrightarrow \left\{ \begin{array}{l}
- 2x \ge 0\\
{x^2} + 2 \le 4{x^2}
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \le 0\\
3{x^2} \ge 2
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \le 0\\
\left[ \begin{array}{l}
x \ge \frac{{\sqrt 6 }}{3}\\
x \le - \frac{{\sqrt 6 }}{3}
\end{array} \right.
\end{array} \right. \Leftrightarrow x \le - \frac{{\sqrt 6 }}{3}
\end{array}\)
Kết hợp điều kiện \(\left[ \begin{array}{l}
x > 0\\
- \frac{{\sqrt {40} }}{5} < x \le 0
\end{array} \right.\) ta có \( - \frac{{\sqrt {40} }}{5} < x \le - \frac{{\sqrt 6 }}{3}\) hay \( - \sqrt {\frac{8}{5}} < x \le - \sqrt {\frac{2}{3}} \)
Tập nghiệm bất phương trình \(S = \left( { - \sqrt {\frac{8}{5}} ; - \sqrt {\frac{2}{3}} } \right]\) nên \(a = \frac{8}{5};b = \frac{2}{3} \to a.b = \frac{8}{5}.\frac{2}{3} = \frac{{16}}{{15}}.\)
Cho tứ diện SABC và G là trọng tâm của tứ diện, mặt phẳng quay quanh AG và cắt các cạnh SB, SC tương ứng tại M, N. Giá trị nhỏ nhất của tỉ số \(\frac{{{V_{S,AMN}}}}{{{V_{S.ABC}}}}\) là
Đặt \(\frac{{SM}}{{SB}} = a;\frac{{SN}}{{SC}} = b\left( {0 < a;b < 1} \right)\)
Lấy E là trung điểm BC.
Trong (SAE), kéo dài AG cắt SE tại I. Khi đó \(I \in MN\) và I là trọng tâm tam giác SBC.
Khi đó trong tam giác SBC ta luôn có \(\frac{{SB}}{{SM}} + \frac{{SC}}{{SN}} = 3\) (tính chất đã được chứng minh ở trên)
Lại có \(\frac{{{V_{S.AMN}}}}{{{V_{S.ABC}}}} = \frac{{SA}}{{SA}}.\frac{{SM}}{{SB}}.\frac{{SN}}{{SC}} = ab\)
Ta có \(\frac{{SB}}{{SM}} + \frac{{SC}}{{SN}} = 3 \Leftrightarrow \frac{1}{a} + \frac{1}{b} = 3.\)
Xét \(\frac{1}{a} + \frac{1}{b}\mathop \ge \frac{2}{{\sqrt {ab} }} \Leftrightarrow \sqrt {ab} \ge \frac{2}{{\frac{1}{a} + \frac{1}{b}}} = \frac{2}{3} \Leftrightarrow ab \ge \frac{4}{9}\)
Dấu = xảy ra khi \(a = b = \frac{2}{3}.\)
Từ đó \(\frac{{{V_{S.AMN}}}}{{{V_{S.ABC}}}} = ab \ge \frac{4}{9}\) hay tỉ số \(\frac{{{V_{S.AMN}}}}{{{V_{S.ABC}}}}\) nhỏ nhất là bằng \(\frac{4}{9}.\)
Thiết diện của hình trụ và mặt phẳng chứa trục của hình trụ là hình chữ nhật có chu vi là 12cm. Giátrị lớn nhất của thể tích khối trụ là
Gọi bán kính đáy và chiều cao của hình trụ lần lượt là r và h (r, h > 0)
Thiết diện là hình chữ nhật ABCD có chu vi \(2\left( {AB + BC} \right) = 2.\left( {h + 2r} \right)\)
Theo giả thiết ta có \(2\left( {h + 2r} \right) = 12 \Leftrightarrow h + 2r = 6 \Rightarrow h = 6 - 2r\left( {r < 3} \right)\)
Thể tích khối trụ \(V = \pi {r^2}h = \pi {r^2}.\left( {6 - 2r} \right) = \pi r.r.\left( {6 - 2r} \right)\)
Áp dụng BĐT Cô-si cho 3 số \(r;r;6 - 2r\) ta được
\(r + r + 6 - 2r \ge 3\sqrt[3]{{r.r\left( {6 - 2r} \right)}} \Leftrightarrow \sqrt[3]{{r.r.\left( {6 - 2r} \right)}} \le 2 \Leftrightarrow {r^2}\left( {6 - 2r} \right) \le 8 \Leftrightarrow \pi {r^2}\left( {6 - 2r} \right) \le 8\pi \)
Hay \(V \le 8\pi .\) Dấu = xảy ra khi \(r = 6 - 2r \Leftrightarrow r = 2\left( {TM} \right)\)
Vậy giá trị lớn nhất của khối trụ là \(V = 8\pi .\)
Cho hàm số \(f(x)\) liên tục trên R và có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số m để phương trình \(f\left( {\left| {\frac{{3\sin x - \cos x - 1}}{{2{\mathop{\rm cosx}\nolimits} - sinx + 4}}} \right|} \right) = f\left( {{m^2} + 4m + 4} \right)\) có nghiệm?
Vì \( - 1 \le {\mathop{\rm sinx}\nolimits} \le 1; - 1 \le cosx \le 1\) nên \(2\cos x - {\mathop{\rm sinx}\nolimits} > - 3 \Rightarrow 2{\mathop{\rm cosx}\nolimits} - sinx + 4 > 0\)
Đặt \(\frac{{3\sin x - \cos x - 1}}{{2{\mathop{\rm cosx}\nolimits} - sinx + 4}} = t \Leftrightarrow 3\sin x - \cos x - 1 = t\left( {2{\mathop{\rm cosx}\nolimits} - sinx + 4} \right)\)
\( \Leftrightarrow \cos x\left( {2t + 1} \right) - {\mathop{\rm sinx}\nolimits} \left( {t + 3} \right) = - 4t - 1\)
Phương trình trên có nghiệm khi \({\left( {2t + 1} \right)^2} + {\left( {t + 3} \right)^2} \ge {\left( { - 4t - 1} \right)^2}\)
\( \Leftrightarrow 5{t^2} + 10t + 10 \ge 16{t^2} + 8t + 1 \Leftrightarrow 11{t^2} - 2t - 9 \le 0 \Leftrightarrow - \frac{9}{{11}} \le t \le 1 \Rightarrow 0 \le \left| t \right| \le 1\)
Từ đồ thị hàm số ta thấy hàm số \(f(x)\) đồng biến trên (0;1)
Nên phương trình \(f\left( x \right) = f\left( {\left| t \right|} \right)\) với \(t \in [0;1]\) có nghiệm duy nhất khi \(x = \left| t \right| \Rightarrow x \ge 0\)
Do đó phương trình \(f\left( {\left| {\frac{{3\sin x - \cos x - 1}}{{2{\mathop{\rm cosx}\nolimits} - sinx + 4}}} \right|} \right) = f\left( {{m^2} + m + 4} \right)\) có nghiệm
\( \Leftrightarrow \left| t \right| = {m^2} + 4m + 4\) có nghiệm với \(0 \le \left| t \right| \le 1\)
\( \Leftrightarrow 0 \le {m^2} + 4m + 4 \le 1 \Leftrightarrow {\left( {m + 2} \right)^2} \le 1 \Leftrightarrow - 3 \le m \le - 1\)
Mà \(m \in Z\) nên \(m \in \left\{ { - 3; - 2; - 1} \right\}.\) Vậy có 3 giá trị của m thỏa mãn yêu cầu.