Biểu thức tọa độ của các phép toán vec tơ

Lý thuyết về Biểu thức tọa độ của các phép toán véc tơ MÔN TOÁN Lớp 10 với nhiều phương pháp giải nhanh kèm bài tập vận dụng
(401) 1338 29/07/2022

Cho $\overrightarrow u  = (x;y)$ ;$\overrightarrow {u'}  = (x';y')$ và số thực $k$. Khi đó ta có:

   1) \(\overrightarrow u  = \overrightarrow {u'}  \Leftrightarrow \left\{ \begin{array}{l}x = x'\\y = y'\end{array} \right.\)

   2) $\overrightarrow u  \pm \overrightarrow v  = (x \pm x';y \pm y')$

   3) $k.\overrightarrow u  = (kx;ky)$

   4) $\overrightarrow {u'} $ cùng phương $\overrightarrow u $($\overrightarrow u  \ne \overrightarrow 0 $) khi và chỉ khi có số $k$ sao cho \(\left\{ \begin{array}{l}x' = kx\\y' = ky\end{array} \right.\)

+ Nếu \(k > 0\) thì \(\overrightarrow {u'} ,\overrightarrow u \) cùng hướng.

+ Nếu \(k < 0\) thì \(\overrightarrow {u'} ,\overrightarrow u \) ngược hướng.

   5) Cho \(A({x_A};{y_A}),B({x_B};{y_B})\) thì:

+ \(\overrightarrow {AB}  = \left( {{x_B} - {x_A};{y_B} - {y_A}} \right)\)

+ \(\left| {\overrightarrow {AB} } \right| = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2}} \)

   6) Tứ giác \(ABCD\) là hình bình hành \( \Leftrightarrow \overrightarrow {AB}  = \overrightarrow {DC}  \Leftrightarrow \left\{ \begin{array}{l}{x_A} + {x_C} = {x_B} + {x_D}\\{y_A} + {y_C} = {y_B} + {y_D}\end{array} \right.\)

(401) 1338 29/07/2022