Đạo hàm cấp cao

Lý thuyết về vi phân và đạo hàm cấp cao môn toán lớp 11 với nhiều dạng bài cùng phương pháp giải nhanh kèm bài tập vận dụng
(404) 1346 29/07/2022

1. Vi phân

\(df\left( x \right) = f'\left( x \right)dx\) hoặc \(dy = y'dx\)

2. Đạo hàm cấp cao

Giả sử hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right)\).

+ Nếu hàm số \(f'\left( x \right)\) có đạo hàm thì đạo hàm của nó được gọi là đạo hàm cấp hai của hàm số \(f\left( x \right)\), kí hiệu là \(f''\left( x \right)\).

Ý nghĩa cơ học của đạo hàm cấp hai:

Xét một chất điểm chuyển động có phương trình là: \(S = s\left( t \right)\).

Khi đó, vận tốc của chất điểm tại thời điểm \({t_0}\) là: \(v\left( {{t_0}} \right) = S'\left( {{t_0}} \right)\)

Gia tốc của chất điểm tại thời điểm \({t_0}\) là: \(a\left( {{t_0}} \right) = S''\left( {{t_0}} \right)\)

+ Đạo hàm cấp \(n\left( {n \in N,n \ge 2} \right)\) của hàm số \(y = f\left( x \right)\), kí hiệu là \({f^{\left( n \right)}}\left( x \right)\) hay \({y^{\left( n \right)}}\) là đạo hàm cấp một của hàm số \({f^{\left( {n - 1} \right)}}\left( x \right)\), tức là \({f^{\left( n \right)}}\left( x \right) = \left[ {{f^{\left( {n - 1} \right)}}\left( x \right)} \right]'\)

Đạo hàm cấp cao của một số hàm cơ bản

+) \({\left( {\sin x} \right)^{\left( n \right)}} = \sin \left( {x + \dfrac{{n\pi }}{2}} \right)\)

+) \({\left( {\cos x} \right)^{\left( n \right)}} = \cos \left( {x + \dfrac{{n\pi }}{2}} \right)\)

+) Nếu $n \le m$ thì $\left( {{x^m}} \right)^{\left( n \right)} =m\left( {m - 1} \right)...\left( {m - n + 1} \right).{x^{m - n}}$

+) Nếu $n>m$ thì ${\left( {{x^m}} \right)^{\left( n \right)}} =0$.

$\begin{array}{l}
+ )y = \sin \left( {ax + b} \right)\\
\Rightarrow {y^{\left( n \right)}} = {a^n}\sin \left( {ax + b + \frac{{n\pi }}{2}} \right)\\
+ )y = \cos \left( {ax + b} \right)\\
\Rightarrow {y^{\left( n \right)}} = {a^n}\cos \left( {ax + b + \frac{{n\pi }}{2}} \right)\\
+ )y = \frac{1}{{ax + b}}\\
\Rightarrow {y^{\left( n \right)}} = \frac{{{{\left( { - 1} \right)}^n}.n!.{a^n}}}{{{{\left( {ax + b} \right)}^{n + 1}}}}\\
+ )y = \sqrt[m]{{ax + b}}\\
\Rightarrow {y^{\left( n \right)}} = \frac{1}{m}.\left( {\frac{1}{m} - 1} \right)...\left( {\frac{1}{m} - n + 1} \right).{a^n}.{\left( {ax + b} \right)^{\frac{1}{m} - n}}
\end{array}$

(404) 1346 29/07/2022