Dãy số

Lý thuyết về dãy số môn toán lớp 11 với nhiều dạng bài cùng phương pháp giải nhanh kèm bài tập vận dụng
(397) 1322 29/07/2022

1. Kiến thức cần nhớ

a) Định nghĩa

- Hàm số \(u\) xác định trên tập hợp các số nguyên dương \({N^*}\) được gọi là một dãy số. (dãy số vô hạn).

- Dãy số xác định trên tập hợp gồm \(m\) số nguyên dương đầu tiên ta cũng gọi là dãy số (dãy số hữu hạn).

Các số hạng trong dãy: \({u_1} = u\left( 1 \right),{u_2} = u\left( 2 \right),...,{u_n} = u\left( n \right),...\)

Kí hiệu: Người ta thường kí hiệu dãy số \(u = u\left( n \right)\) bởi \(\left( {{u_n}} \right)\) và gọi \({u_n}\) là số hạng tổng quát của dãy số đó.

b) Các cách cho một dãy số

- Cách 1: Cho dãy số bởi công thức của số hạng tổng quát.

Ví dụ: Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \dfrac{1}{{n + 2}}\).

- Cách 2: Cho dãy số bởi hệ thức truy hồi (hay còn nói Cho dãy số bằng quy nạp).

Ví dụ: Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 2.{u_{n - 1}}\).

c) Dãy số tăng, dãy số giảm

Định nghĩa:

- Dãy số \(\left( {{u_n}} \right)\) được gọi là dãy số tăng nếu ta có \({u_{n + 1}} > {u_n}\) với mọi \(n \in {\mathbb{N}^*}\)

- Dãy số \(\left( {{u_n}} \right)\) được gọi là dãy số giảm nếu ta có \({u_{n + 1}} < {u_n}\) với mọi \(n \in {\mathbb{N}^*}\)

Không phải mọi dãy số đều chỉ tăng hoặc giảm.

Có những dãy số không tăng cũng không giảm như \({u_n} = {\left( { - 3} \right)^n}\) tức là \( - 3;9; - 27;81;...\)

d) Dãy số bị chặn

Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn trên nếu tồn tại một số \(M\) sao cho

\({u_n} \le M,\forall n \in {N^*}\)

Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn dưới nếu tồn tại một số \(m\) sao cho

\({u_n} \ge m,\forall n \in {N^*}\)

Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn nếu nó vừa bị chặn trên vừa bị chặn dưới, tức là tồn tại các số \(M,m\) sao cho

\(m \le {u_n} \le M,\forall n \in {N^*}\)

2. Một số dạng toán thường gặp

Dạng 1: Tìm số hạng của dãy số.

Phương pháp:

Sử dụng công thức tổng quát hoặc công thức truy hồi để tìm số hạng của dãy.

Dạng 2: Tìm số hạng tổng quát của dãy số.

Phương pháp:

- Bước 1: Liệt kê các số hạng của dãy số và dự đoán công thức tổng quát.

- Bước 2: Chứng minh công thức bằng phương pháp quy nạp toán học.

Dạng 3: Xét tính tăng, giảm, bị chặn của dãy số.

Sử dụng định nghĩa dãy số tăng, giảm, bị chặn của dãy số để xét.

(397) 1322 29/07/2022